Skip to main content
Log in

Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The effects of major alloy element contents of Zn, Mg, Cu in Al-Zn-Mg-Cu alloys on the formation and evolution of intermetallic phases during casting, homogenization and solution treatment have been investigated through using X-ray diffraction, scanning electron microscopy and differential scanning calorimetry. Experimental results showed that a relatively higher Zn content with lower Mg and Cu contents was beneficial to the formation of MgZn2 phase instead of the Al2CuMg phase, which resulted in the unicity of the intermetallics in the Al matrix, and that the MgZn2 phase was easier for diffusion and dissolution during homogenization and solution than the Al2CuMg phase. Additionally, the results of the first-principles calculations gave support for explaining the experimental phenomena. A larger absolute value of formation enthalpy and a smaller value of binding energy of the MgZn2 phase, as compared with the Al2CuMg phase, give it priority to precipitate during casting and make it easier to re-dissolve during homogenization and solution treatment. What’s more, higher elastic constants with severe anisotropy of Young’s modulus make undissolved blocks of Al2CuMg phase act as crack initiation, which degrade the performance of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia Z H, Hu G Q, Forbord B, et al. Effect of homogenization and alloying elements on recrystallization resistance of Al-Zr-Mn alloys. Mater Sci Eng A, 2007, 444: 284–290

    Article  Google Scholar 

  2. Eivani A R, Ahmed H, Zhou J, et al. An experimental and theoretical investigation of the formation of Zr-containing dispersoids in Al-4.5Zn-1Mg aluminum alloy. Mater Sci Eng A, 2010, 527: 2418–2430

    Article  Google Scholar 

  3. Robson J D. Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model. Mater Sci Eng A, 2002, 338: 219–229

    Article  Google Scholar 

  4. Du Z W, Zhou T T, Chen C Q, et al. Quantitative analysis of precipitation in an Al-Zn-Mg-Cu-Li alloy. Mater Charact, 2005, 55: 75–82

    Article  Google Scholar 

  5. Du Y, Zhang L J, Cui S L, et al. Atomic mobilities and diffusivities in Al alloys. Sci China Tech Sci, 2012, 55: 306–328

    Article  Google Scholar 

  6. Deng Y, Yin Z M, Cong F G. Intermetallic phase evolution of 7050 aluminum alloy during homogenization. Intermetallics, 2012, 26: 114–121

    Article  Google Scholar 

  7. Fan X G, Jiang D M, Meng Q C, et al. The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization. Mater Lett, 2006, 60: 1475–1479

    Article  Google Scholar 

  8. He L Z, Li X H, Zhu P, et al. Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization. Mater Charact, 2012, 71: 19–23

    Article  MathSciNet  Google Scholar 

  9. Gandin C A, Jacot A. Modeling of precipitate-free zone formed upon homogenization in a multi-component alloy. Acta Mater, 2007, 55: 2539–2553

    Article  Google Scholar 

  10. Shuey R T, Barlat F, Karbin M E, et al. Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy. Metall Mater Trans A, 2009, 40A: 365–376

    Article  Google Scholar 

  11. Boselli J, Chakrabarti D J, Shuey R T. Aerospace applications: Metallurgical insights into the improved performance of aluminum alloy 7085 thick products. Al Alloys, 2008, 1: 202–208

    Google Scholar 

  12. Bobzin K, Bagcivan N, Parkot D, et al. Calculation of effective properties of textile reinforced aluminum alloy by a two-step homogenization procedure. Comput Mater Sci, 2010, 47: 801–806

    Article  Google Scholar 

  13. Gao F H, Li N K, Tian N, et al. Overheating temperature of 7B04 high strength aluminum alloy. Trans Nonferrous Met Soc China, 2008, 18: 321–326

    Article  Google Scholar 

  14. Dons A L. The Alstruc homogenization model for industrial aluminum alloys. J Light Metal, 2001, 1: 133–149

    Article  Google Scholar 

  15. Zhang J, Huang Y N, Mao C, et al. Structure, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys. Solid State Commun, 2012, 152: 2100–2104

    Article  Google Scholar 

  16. Zhang C L, Han P D, Zhang Z X, et al. Transformation of the theta-phase in Mg-Li-Al alloys: a density functional theory study. J Mol Mode, 2012, 18: 1123–1127

    Article  Google Scholar 

  17. Zhang J J, Chen Z, Wang Y X, et al. Gibbs free energy calculation of Al-Cu-Li alloy with the effect of electric field from electron level. J Alloy Compd, 2008, 457: 526–531

    Article  Google Scholar 

  18. Zhang C L, Han P D, Yan X, et al. First-principles study of typical precipitates in creep resistant magnesium Alloys. J Phys D-Appl Phys, 2009, 42: 125403–125407

    Article  Google Scholar 

  19. Zhang C L, Han P D, Li J M, et al. First-principles study of the mechanical properties of NiAl microalloyed by M(Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd). J Phys D-Appl Phys, 2008, 41: 095410–095414

    Article  Google Scholar 

  20. Hu X L, Liu X, Xu Z, et al. First-principles investigation of the effects of B impurities on the mechanical properties of NiAl intermetallics. Sci China Phys Mech Astron, 2011, 54: 809–814

    Article  Google Scholar 

  21. Mehrer H, editor. Diffusion in Solid Metals and Alloys, Vol.26. Berlin: Springer-Verlag, 1990

    Google Scholar 

  22. Wang T, Yin Z M, Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy. Trans Nonferrous Met Soc China, 2007, 17: 335–339

    Article  Google Scholar 

  23. Liu S D, You J H, Zhang X M, et al. Influence of cooling rate after homogenization on the flow behavior of aluminum alloy 7050 under hot compression. Mater Sci Eng A, 2010, 527: 1200–1205

    Article  Google Scholar 

  24. Medvedeva M I, Gornostyrev Y N, Novikov D L, et al. Ternary site preference energies size misfits and solid soluteion hardening in NiAl and FeAl. Acta Mater, 1998, 46(10): 3433–3442

    Article  Google Scholar 

  25. Sahu B R. Electronic structure and bonding of ultralight LiMg. Mater Sci Eng B, 1997, 49(1): 74–78

    Article  MathSciNet  Google Scholar 

  26. Wandahl G, Christensen A N. Occurrence of extinction correlated with crystal growth mode for crystals of Pd3Ce and MgZn2. Acta Chem Scand, 1989, 43: 296–297

    Article  Google Scholar 

  27. Komura Y, Tokunaga K. Structural studies of stacking variants in Mg-base Friauf-Laves phases. Acta Crystallogr B, 1980, B36: 1548–1554

    Article  Google Scholar 

  28. Friauf J B. The crystal structure of magnesium di-zincide. Phys Rev, 1927, 29(1): 34–40

    Article  Google Scholar 

  29. Ohba T, Kitano Y, Komura Y. The charge-density study of the Laves phases, MgZn2 and MgCu2. Acta Cryst, 1984, C40: 1–5

    Google Scholar 

  30. Li C H, Hoe J L, Wu P. Empirical correlation between melting temperature and cohesive energy of binary Laves phases. J Phys Chem Solids, 2003, 64: 201–212

    Article  Google Scholar 

  31. Heying B, Hoffmann R D, Pöttgen R. Structure refinement of the S-phase precipitate MgCuAl2. Z Naturforsch, 2005, 60b: 491–494

    Google Scholar 

  32. Zhang H, Shang S L, Saal J E, et al. Enthalpies of formation of magnesium compounds from first-principles calculations. Intermetallics, 2009, 17(11): 878–885

    Article  Google Scholar 

  33. Heying B, Hoffmann R D, Pöttgen R. Structure refinement of the S-phase precipitate MgCuAl2. Z Naturforsch, 2005, 60b: 491–494

    Google Scholar 

  34. Ostoja-Starzewski M, Wang C. Linear elasticity of planar Delaunay networks. Part Π: Voigt and Reuss bounds, and modification for cetroids. Acta Mech, 1990, 84: 47–61

    Article  MathSciNet  MATH  Google Scholar 

  35. Bouhemadou A. Calculated structural, electronic and elastic properties of M2GeC(M =Ti, V, Cr, Zr, Nb,Mo, Hf, Ta andW). Appl Phys A, 2009, 96: 959–967

    Article  Google Scholar 

  36. Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag, 1954, 45: 823–843

    Google Scholar 

  37. Ravindran P, Fast L, Korzhavyi P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J Appl Phys, 1998, 84: 4891–4904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunMei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Chen, Z., Zeng, S. et al. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys. Sci. China Technol. Sci. 56, 2827–2838 (2013). https://doi.org/10.1007/s11431-013-5356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5356-5

Keywords

Navigation