Skip to main content
Log in

Modeling of nano piezoelectric actuator based on block matching algorithm with optimal block size

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In order to model the hysteresis behavior of a nano piezoelectric actuator (PA) on nano scale in a real time system, a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper. First, Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator. Then, a real time block matching algorithm is researched and its block size is optimized with a standard object. Finally, experiments are performed with respect to a nanometer movement platform system, and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Eeferences

  1. Rangasamy M. Nano technology: A review. J Appl Phar Sci, 2011, 1(2): 8–16

    Google Scholar 

  2. Croft D, Shed G, Devasia S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. J Dyn Syst, Meas Contl, 2001, 123(1): 35–43

    Article  Google Scholar 

  3. Putra A S, Huang S N, Tan K K, et al. Design, modeling and control of piezoelectric actuators for intracytoplasmic sperm injection. IEEE T Contl Syst Technol, 2007, 15(5): 879–890

    Article  Google Scholar 

  4. Lee F S, Chiang S F, Jhang J J, et al. Prototyping of a hybrid driver for nano-manipulation using piezoelectric actuators. Proceedings of the 4th International Conference on Mechatronics, Kuala Lumur, May 17–19, 2007. 1–5

  5. Basso V, Sasso C P, LoBue M. Thermodynamic aspects of first-order phase transformations with hysteresis in magnetic materials. J Magn Magn Mater, 2007, 316(2): 262–268

    Article  Google Scholar 

  6. Peng J Y, Chen X B. Modeling of piezoelectric-driven stick-slip actuators, IEEE/ASME T Mech, 2011, 16(2): 394–399

    Article  Google Scholar 

  7. Tan U X, Win T L, Tang W. Modeling piezoelectric actuator hysteresis with singularity free Prandtl-Ishlinskii model. Proceedings of the 2006 IEEE International Conference of Robotics and Biomimetics, Kunming, China, December 17–20, 2006. 251–256

  8. Bashash S, Jalili N. Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems. IEEE T Contl Syst Technol, 2007, 15(5): 867–878

    Article  Google Scholar 

  9. Zhou J, Wen C Y, Zhang C J. Adaptive backstepping control of a Piezopositioning mechanism with hysteresis. Trans Can Soc Mech Eng, 2007, 31(1): 97–110

    Google Scholar 

  10. Zakerzadeh M R, Firouzi M, Sayyaadi H, et al. Hysteresis nonlinearity identification using new preisach model-based artificial neural network approach. J Appl Math, 2011, Article ID 458768

  11. Pasco Y, Berry A. Consideration of piezoceramic actuator nonlinearity in the active isolation of deterministic vibration. J Sound Vib, 2006, 289: 481–508

    Article  Google Scholar 

  12. Mayergoyz I D, Friedman G. Generalized Prisach model of hystereisis. IEEE T Mag, 1988, 24(1): 212–217

    Article  Google Scholar 

  13. Szczech J B, Megaridis C M, Gamota D R, et al. Fine-line conductor manufacturing using drop-on demand PZT printing technology. IEEE T Elec Pack Manuf, 2002, 25(1): 26–33

    Article  Google Scholar 

  14. Wei Y J, Wu C D, Dong Z L, et al. Global shape reconstruction of the bended AFM cantilever. IEEE T Nanotechnol, 2012, 11(4): 713–719

    Article  Google Scholar 

  15. Nakayama K. Biological image motion processing: A review. Vision Res, 1985, 25(5): 625–660

    Article  Google Scholar 

  16. Wei Y J, Wu C D, Dong Z L. Global shape reconstruction of nano grid with single fixed camera. Sci China Tech Sci, 2011, 54(1): 1–9

    Article  Google Scholar 

  17. Wei Y J, Wu C D, Dong Z L. An automatic compensation method on compression effect and surface elasticity measurement based on the deflection signal of AFM. Sci China Tech Sci, 2011, 54(9): 2397–2403

    Article  Google Scholar 

  18. Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of DARPA Imaging Understanding Workshop, Vancouver, British Columbia, 1981. 121–130

  19. Singh R. An estimation-theoretic framework for image flow computation. In: Proceedings of the Third International Conference on Computer Vision, Osaka, December 4–7, 1990. 168–177

  20. Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques. Int J Computer Vision, 1994, 12(1): 43–77

    Article  Google Scholar 

  21. Kim J H, Menq C H. Visually servoes 3-D alignment of multiple objects with subnanometer precision. IEEE T Nanotechnol, 2007, 7(3): 321–330

    Article  Google Scholar 

  22. Robinson D, Milanfar P. Fundamental performance limits in image registration. IEEE T Image Proc, 2004, 13(9): 1185–1199

    Article  Google Scholar 

  23. Tian Q, Huhns M. Algorithms for subpixel registration. Comput Vis, Graph, Image Proc, 1986, 35: 220–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YangJie Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Wu, C. Modeling of nano piezoelectric actuator based on block matching algorithm with optimal block size. Sci. China Technol. Sci. 56, 2649–2657 (2013). https://doi.org/10.1007/s11431-013-5351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5351-x

Keywords

Navigation