Skip to main content
Log in

Recent development of vortex ring impinging onto the wall

  • Progress of Projects Supported by NSFC
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

It has been more than one hundred years for the study on vortex structure, which is a very important flow structure in the fluid mechanics. Recently, the interaction between vortex ring and solid wall has attracted more and more attentions, for not only it is a very common phenomenon in the engineering, but also it could benefit the understanding of the mechanism of interaction between the vortex and the boundary layer. The interaction between the vortex ring and the wall is reviewed in this paper, including the evolution of vortex ring, the mechanics of vortex ring azimuthal instabilities, the achievements of synthetic vortex ring impinging onto the solid wall, its potential application to heat transfer, and the influence of vortex ring compression. Besides, the latest results of vortex ring impinging onto porous wall are presented, and the future possible investigation direction on this issue is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Didden N. On the formation of vortex rings-rolling-up and production of circulation. J Appl Math Phys, 1979, 30: 101–116

    Article  Google Scholar 

  2. Dabiri J O, Gharib M. Fluid entrainment by isolated vortex rings. J Fluid Mech, 2004, 511: 311–331

    Article  MATH  Google Scholar 

  3. Fukumoto Y, Hattori Y. Curvature instability of a vortex ring. J Fluid Mech, 2005, 526: 77–115

    Article  MathSciNet  MATH  Google Scholar 

  4. Chahine G L, Genoux P F. Collapse of a cavitating vortex ring. J Fluids Eng Trans ASME, 1983, 105: 400–405

    Article  Google Scholar 

  5. Akhmetov D G, Lugovtsov B A, Tarasov V F. Extinguishing gas and oil well fires by means of vortex rings. Combust Explo Shock, 1980, 16: 490–494

    Article  Google Scholar 

  6. Walker J D A, Smith C R, Cerra A W, et al. Impact of a vortex ring on a wall. J Fluid Mech, 1987, 181: 99–140

    Article  Google Scholar 

  7. Swearingen J D, Crouch J D, Handler R A. Dynamics and stability of a vortex ring impacting a solid boundary. J Fluid Mech, 1995, 297: 1–28

    Article  MathSciNet  MATH  Google Scholar 

  8. Fabris D, Liepmann D, Marcus D. Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys Fluids, 1996, 8: 2640–2649

    Article  Google Scholar 

  9. Xu Y, Feng L H, Wang J J. Experimental investigation of a synthetic jet impinging on a fixed wall. Exp Fluids, 2013, 54: 1512

    Article  Google Scholar 

  10. Carr L W. Progress in analysis and prediction of dynamic stall. J Aircraft, 1988, 25: 6–17

    Article  Google Scholar 

  11. Cunningham A M. Practical problems: Airplanes. Prog Astronaut Aeronaut, 1989, 120: 75–132

    Google Scholar 

  12. Mabey D G. Physical phenomena associated with unsteady transonic flows. AIAA Prog Astronaut Aeronaut, 1989, 120: 1–55

    Google Scholar 

  13. Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layers. J Fluid Mech, 1967, 30: 741–773

    Article  Google Scholar 

  14. Naaktgeboren C, Krueger P S, Lage J L. Interaction of a laminar vortex ring with a thin permeable screen. J Fluid Mech, 2012, 707: 260–286

    Article  MATH  Google Scholar 

  15. Smith B L, Glezer A. The formation and evolution of synthetic jets. Phys Fluids, 1998, 10: 2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang P F, Wang J J, Feng L H. Review on the zero-net-mass-flux jet and its application in separation flow control. Sci China Ser E-Tech Sci, 2008, 51: 1315–1344

    Article  Google Scholar 

  17. Pavlova A, Amitay M. Electronic cooling using synthetic jet impingement. J Heat Transf Trans ASME, 2006, 128: 897–907

    Article  Google Scholar 

  18. Magarvey R H, MacLatchy C S. Formation and the structure of vortex rings and disintegration of vortex rings. Can J Phys, 1964, 42: 678–689

    Article  MATH  Google Scholar 

  19. Cerra A W, Smith C R. Experimental Observation of Vortex Ring Interaction with the Fluid Adjacent to a Surface. Bethlehem: Department of Mechanical Engineering and Mechanics Press, 1983

    Google Scholar 

  20. Gendrich C P, Bohl D G, Koochesfahani M M. Whole field measurements of unsteady separation in a vortex ring wall interaction. AIAA Paper 1997-1780, 1997

    Google Scholar 

  21. Orlandi P, Verzicco R. Vortex ring impinging on walls: axisymmetric and three-dimensional simulations. J Fluid Mech, 1993, 256: 615–645

    Article  MATH  Google Scholar 

  22. Barker S J, Crow S C. Motion of two-dimensional vortex pairs in a ground effect. J Fluid Mech, 1977, 82: 659–671

    Article  Google Scholar 

  23. Smith C R, Walker J D A, Haidari A H, et al. On the dynamics of near-wall turbulence. Philos T Roy Soc A, 1991, 336: 131–175

    Article  MATH  Google Scholar 

  24. Cheng M, Luo J, Luo L S. Numerical study of a vortex ring impacting a flat wall. J Fluid Mech, 2010, 660: 430–455

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghosh D, Baeder J D. High-Order accurate incompressible Navier-Stokes algorithm for vortex-ring interactions with solid wall. AIAA J, 2012, 50: 2408–2422

    Article  Google Scholar 

  26. Verzicco R, Orlandi P. Wall/vortex-ring interactions. Appl Mech Rev, 1996, 49: 447–461

    Article  Google Scholar 

  27. Chu C C, Wang C T, Chang C C. Vortex ring impinging on a solid plane surface-vortex structure and surface force. Phys Fluids, 1995, 7: 1391–1401

    Article  MATH  Google Scholar 

  28. Naguiba A M, Koochesfahani M M. On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction. Phys Fluids, 2004, 16: 2613–2622

    Article  Google Scholar 

  29. Arévalo G, Hernández R H, Nicot C, et al. Vortex ring head-on collision with a heated vertical plate. Phys Fluids, 2007, 19: 083603

    Article  Google Scholar 

  30. Arévalo G, Hernández R H, Nicot C, et al. Particle image velocimetry measurements of vortex rings head-on collision with a heated vertical plate. Phys Fluids, 2010, 22: 053604

    Article  Google Scholar 

  31. Maxworthy T. The structure and stability of vortex rings. J Fluid Mech, 1972, 51: 15–32

    Article  Google Scholar 

  32. Krutzsch C H. Uber eine experimentell beobachtete erscheinung an wirbeltringen bei ihrer translatorischen bewegung in wirklichen flussigkeiten. Ann Phys, 1939, 35: 497–523

    Article  Google Scholar 

  33. Widnall S E, Bliss D B, Tsai C Y. Instability of short waves on a vortex ring. J Fluid Mech, 1974, 66: 35–47

    Article  MathSciNet  MATH  Google Scholar 

  34. Widnall S E, Tsai C Y. The instability of the thin vortex ring of constant vorticity. Philos T Roy Soc A, 1977, 287: 273–305

    Article  MathSciNet  MATH  Google Scholar 

  35. Shariff K, Verzicco R, Orlandi P. A numerical study of three-dimensional vortex ring instabilities: Viscous corrections and early nonlinear stage. J Fluid Mech, 1994, 279: 351–375

    Article  MathSciNet  MATH  Google Scholar 

  36. Dazin A, Dupont P, Stanislas M. Experimental characterization of the instability of the vortex rings. Part I: Linear phase. Exp Fluids, 2006, 40: 383–399

    Google Scholar 

  37. Saffman P G. The number of waves on unstable vortex rings. J Fluid Mech, 1978, 84: 625–639

    Article  MathSciNet  Google Scholar 

  38. Masuda N, Yoshida J, Ito B, et al. Collision of a vortex ring on granular material. Part I: Interaction of the vortex ring with the granular layer. Fluid Dyn Res, 2012, 44: 015501

    Article  Google Scholar 

  39. Kataoka K, Suguro M, Degawa H, et al. The effect of surface renewal due to large-scale eddies on jet impingement heat transfer. Int J Heat Mass Tran, 1987, 30: 559–567

    Article  Google Scholar 

  40. Martin H. Heat and mass transfer between impinging gas jets and solid surfaces. Adv Heat Transfer, 1977, 13: 1–60

    Article  Google Scholar 

  41. Eibeck R A, Keller J O, Bramlette T T, et al. Pulse combustion: impinging jet heat transfer enhancement. Combust Sci Technol, 1993, 94: 147–165

    Article  Google Scholar 

  42. Zumbrunnen D A, Aziz M. Convective heat transfer enhancement due to intermittency in an impinging jet. J Heat Trans-T ASME, 1993, 115: 91–97

    Article  Google Scholar 

  43. Sailor D J, Rohli D J, Fu Q. Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet. Int J Heat Fluid, 1999, 20: 574–580

    Article  Google Scholar 

  44. Zulkifli R, Benard E, Raghunathan S, et al. Effect of pulse jet frequency on impingement heat transfer. AIAA Paper 2004-1343, 2004

    Google Scholar 

  45. Vukasinovic J, Glezer A. An active radial countercurrent heat sink driven by a synthetic jet actuator. In: International mechanical engineering congress and exposition. New York: ASME, 2001. 9–16

    Google Scholar 

  46. Kercher D S, Lee J B, Brand O, et al. Microjet cooling devices for thermal management of electronics. IEEE Trans Compon Pack Tech, 2003, 26: 359–366

    Article  Google Scholar 

  47. Krishnan G, Mohseni K. An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet. Eur J Mech B-Fluids, 2010, 29: 269–277

    Article  MATH  Google Scholar 

  48. Lim T T. An experimental study of a vortex ring interacting with an inclined wall. Exp Fluids, 1989, 7: 453–463

    Article  Google Scholar 

  49. Mariani R, Quinn M K, Kontis K, et al. Shock-free compressible vortex rings impinging on a stationary surface: Effects of surface angle variation. Exp Therm Fluid Sci, 2013, 47: 126–142

    Article  Google Scholar 

  50. Kontis K, An R, Zare-Behtash H, et al. Head-on collision of shock wave induced vortices with solid and perforated walls. Phys Fluids, 2008, 20: 016104

    Article  Google Scholar 

  51. Minota T, Nishida M, Lee M G. Shock formation by compressible vortex ring impinging on a wall. Fluid Dyn Res, 1997, 21: 139–157

    Article  Google Scholar 

  52. Murugan T, De S. Experimental study on a compressible vortex ring in collision with a wall. J Vis, 2012, 15: 321–332

    Article  Google Scholar 

  53. Adhikari D, Lim T T. The impact of a vortex ring on a porous screen. Fluid Dyn Res, 2009, 41: 051404

    Article  Google Scholar 

  54. Hrynuk J, Luipen J V, Bohl D. Flow visualization of a vortex ring interaction with porous surfaces. Phys Fluids, 2012, 24: 037103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Wang, J. Recent development of vortex ring impinging onto the wall. Sci. China Technol. Sci. 56, 2447–2455 (2013). https://doi.org/10.1007/s11431-013-5338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5338-7

Keywords

Navigation