Skip to main content
Log in

Magnetoelectric cylindrical layered composite structure with multi-resonance frequencies

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection. Due to the cylindrical structure, the combined structure does not need more space. The characteristics of multi-resonance frequencies have been studied. Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites. The number of resonance frequencies increases as the number of cylindrical layered composites increases. The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau L D, Lifshitz E M. Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1960. 417–418

    MATH  Google Scholar 

  2. Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759–765

    Article  Google Scholar 

  3. Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys, 2008, 103: 031101

    Article  Google Scholar 

  4. Folen V J, Rado G T, Stalder E W. Anisotropy of the magnetoelectric effect in Cr2O3. Phys Rev Lett, 1961, 6: 607–608

    Article  Google Scholar 

  5. Fetisov Y K, Bush A A, Kamentsev K E, et al. Ferrite-piezoelectric multilayers for magnetic field sensors. IEEE Sens J, 2006, 6(4): 935–938

    Article  Google Scholar 

  6. Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys, 2005, 38: R123–R152

    Article  Google Scholar 

  7. Duc N, Giang D. Magnetic sensors based on piezoelectric-magneto-strictive composites. J Alloys Compd, 2008, 449: 214–218

    Article  Google Scholar 

  8. Israel C, Mathur N D, Scott J F. A one-cent room-temperature magnetoelectric sensor. Nature Mater, 2008, 7: 93–94

    Article  Google Scholar 

  9. Bichurin M I, Petrov V M, Petrov R V, et al. Magnetoelectric sensor of magnetic field. Ferroelectrics, 2002, 280: 365–368

    Google Scholar 

  10. Bi K, Wang Y G, Pan D A, et al. Large magnetoelectric effect in mechanically mediated structure of TbFe2, Pb(Zr,Ti)O3, and nonmagnetic flakes. Appl Phys Lett, 2011, 98: 133504

    Article  Google Scholar 

  11. Zhang C L, Chen W Q. A wideband magnetic energy harvester. Appl Phys Lett, 2010, 96: 123507

    Article  Google Scholar 

  12. Nan C W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B, 1994, 50: 6082–6088

    Article  Google Scholar 

  13. Pan D A, Bai Y, Chu W Y, et al. Ni-PZT-Ni trilayered magnetoelectric composites synthesized by electro-deposition. J Phys Condens Matter 2008, 20: 025203

    Article  Google Scholar 

  14. Dong S X, Zhai J Y, Xing Z P, et al. Giant magnetoelectric effect (under a dc magnetic bias of 2 Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1/3, Nb2/3)O3-7%PbTiO3 fibers. Appl Phys Lett, 2007, 91: 022915

    Article  Google Scholar 

  15. Ryu J, Carazo A V, Uchino K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn J Appl Phys, 2001, 40: 4948–4951

    Article  Google Scholar 

  16. Srinivasan G. Magnetoelectric composites. Annu Rev Mater Res, 2010, 40: 153–178

    Article  Google Scholar 

  17. Bichurin M I, Filippov D A, Petrov V M, et al. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys Rev B, 2003, 68: 132408

    Article  Google Scholar 

  18. Bi K, Wang Y G, Wu W. Tunable resonance frequency of magnetoelectric layered composites. Sensor Actuat A-Phys, 2011, 166: 48–51

    Article  Google Scholar 

  19. Chashin D V, Fetisov Y K, Tafintseva E V, et al. Magnetoelectric effects in layered samples of lead zirconium titanate and nickel films. Solid State Commun, 2008, 148: 55–58

    Article  Google Scholar 

  20. Pan D A, Bai Y, Volinsky A A, et al. Giant magnetoelectric effect in Ni-lead zirconium titanate cylindrical structure. Appl Phys Lett, 2008, 92: 052904

    Article  Google Scholar 

  21. Jia Y M, Luo H S, Zhao X Y, et al. Giant magnetoelectric response from a piezoelectric/magnetostrictive laminated composite combined with a piezoelectric transformer. Adv Mater, 2008, 20: 4776–4779

    Article  Google Scholar 

  22. Bi K, Wu W, Gu Q L, et al. Large magnetoelectric effect and resonance frequency controllable characteristics in Ni-lead zirconium titanate-Ni cylindrical layered composites. J Alloys Compd, 2011, 509: 5163–5166

    Article  Google Scholar 

  23. Fetisov Y K, Chashin D V. Transformation of alternating magnetic and electric fields in a ferroelectric-conductor ring structure. Tech Phys Lett, 2009, 35: 710–712

    Article  Google Scholar 

  24. Fetisov Y K, Chashin D V, Srinivasan G. Piezoinductive effects in a piezoelectric ring with metal electrodes. J Appl Phys, 2009, 106: 044103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, K., Dong, G., Pan, D. et al. Magnetoelectric cylindrical layered composite structure with multi-resonance frequencies. Sci. China Technol. Sci. 56, 2572–2575 (2013). https://doi.org/10.1007/s11431-013-5335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5335-x

Keywords

Navigation