Skip to main content
Log in

A high-order multidimensional gas-kinetic scheme for hydrodynamic equations

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions. In the current approach, the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme. In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space, two particle collision times will be used in the current high-order gas-kinetic scheme (GKS). Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes, the current method is based on a high-order multidimensional gas evolution model, where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation. The high-order flux function becomes a unification of the upwind and central difference schemes. The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme. Especially, for a compact method, the use of a high-order local evolution solution in both space and time may become even more important, because a short stencil and local low order dynamic evolution model, i.e., the Riemann solution, are contradictory, where valid mechanism for the update of additional degrees of freedom becomes limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harten A, Engquist B, Osher S, et al. Uniformly high order essentially non-oscillatory schemes III. J Comput Phys, 1987, 71: 231–303

    Article  MathSciNet  MATH  Google Scholar 

  2. Shu C W, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes II. J Comput Phys, 1989, 83: 32–78

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200–212

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202–228

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu K. Gas-Kinetic Schemes for Unsteady Compressible Flow Simulations. von Karman Institute report, Belgium, March 1998

    Google Scholar 

  6. Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations, and its connection with artificial dissipation and Godunov method. J Comput Phys, 2001, 171: 289–335

    Article  MathSciNet  MATH  Google Scholar 

  7. Ohwada T, Fukata S. Simple derivation of high-resolution schemes for compressible flows by kinetic approach. J Comput Phys, 2006, 211: 424–447

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhatnagar P L, Gross E P, Krook M. A Model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems. Phys Rev, 1954, 94: 511–525

    Article  MATH  Google Scholar 

  9. Li J Q, Li Q B, Xu K. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations. J Comput Phys, 2011, 230: 5080–5099

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar G, Girimaji S S, Kerimo J. WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. J Comput Phys, 2013, 234: 499–523.

    Article  MathSciNet  Google Scholar 

  11. Li QB, Xu K, Fu S. A high-order gas-kinetic Navier-Stokes solver. J Comput Phys, 2010, 229: 6715–6731

    Article  MathSciNet  MATH  Google Scholar 

  12. Ohwada T, Xu K. The kinetic scheme for full Burnett equations. J Comput Phys, 2004, 201: 315–332

    Article  MathSciNet  MATH  Google Scholar 

  13. Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Lecture Notes in Mathematics. Heidelberg: Springer, 1998

    Google Scholar 

  14. Toro E. Riemann Solvers and Numerical Methods for Fluid Dynamics. Heidelberg: Springer, 1999

    Book  MATH  Google Scholar 

  15. Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math, 1954, 7: 159–193

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang H Z, Liu TG. A note on the conservative schemes for the Euler equations. J Comput Phys, 2006, 218: 451–459

    Article  MathSciNet  MATH  Google Scholar 

  17. Woodward P, Colella P. Numerical simulations of two-dimensional fluid flow with strong shocks. J Comput Phys, 1984, 54: 115–173

    Article  MathSciNet  MATH  Google Scholar 

  18. Casper J. Finite-volume implementation of high-order essentially non-oscil latory schemes in two dimensions. AIAA J, 1992, 30: 2829–2835

    Article  MATH  Google Scholar 

  19. Su M D, Xu K, Ghidaoui M. Low speed flow simulation by the gas-kinetic scheme. J Comput Phys, 1999, 150: 17–39

    Article  MATH  Google Scholar 

  20. Xu K, He X Y. Lattice Boltzmann method and Gas-kinetic BGK scheme in the low Mach number viscous flow simulations. J Comput Phys, 2003, 190: 100–117

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo Z L, Liu H W, Luo L S, et al. A comparative study of the LBM and GKS methods for 2D near incompressible flows. J Comput Phys, 2008, 227: 4955–4976

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys, 1982, 48: 387–411

    Article  MATH  Google Scholar 

  23. Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids, 1998, 27: 421–433

    Article  MATH  Google Scholar 

  24. Titarev V A, Toro E F. Finite-volume WENO schemes for three-dimensional conservation laws. J Comput Phys, 2004, 201: 238–260

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Xu, K. A high-order multidimensional gas-kinetic scheme for hydrodynamic equations. Sci. China Technol. Sci. 56, 2370–2384 (2013). https://doi.org/10.1007/s11431-013-5334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5334-y

Keywords

Navigation