Skip to main content
Log in

Theoretical analysis of the harmonic characteristics of modular multilevel converters

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

To understand the operation principle of the modular multilevel converter (MMC) deeply, it is necessary to study the harmonic characteristics of the MMC theoretically. Besides, the analytical harmonic formulas of the MMC are useful in designing the main circuit, reducing the losses and improving the waveform quality. Based on the average switching function and the Fourier series harmonic analysis, this paper deduces the analytical expressions for such electrical quantities as the arm voltage, the arm current, the capacitor voltage, the capacitor current and the circulating current of the MMC. Finally, a digital model of a 21-level MMC-HVDC system is realized in PSCAD/EMTDC. The results of the analytical expressions coincide with the simulation results, which verify the effectiveness and feasibility of the proposed analytical expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao C Y, Xu J Z, Li T. DC faults ride-through capability analysis of Full-Bridge MMC-MTDC System. Sci China Tech Sci, 2013, 56: 253–261

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu Z Q, Song Q, Liu W H. VSC-HVDC system based on modular multilevel converters (in Chinese). Autom Elec Power Syst, 2010, 34(2): 53–58

    MATH  Google Scholar 

  3. Guan M Y, Xu Z, Tu Q R, et al. Nearest level modulation for modular multilevel converters in HVDC transmission (in Chinese). Autom Elec Power Syst, 2010, 34(2): 48–52

    Google Scholar 

  4. Du W J, Wang H F, Cheng S J, et al. Effect of embedded voltage source converter on power system oscillation damping. Sci China Tech Sci, 2010, 53: 892–901

    Article  MATH  Google Scholar 

  5. Ding G J, Ding M, Tang G F, et al. Submodule capacitance parameter and voltage balancing scheme of a new multilevel VSC modular (in Chinese). Proc CSEE, 2009, 29(30): 1–6

    Google Scholar 

  6. Meng F G, Yang W, Yang S Y. Active harmonic suppression of paralleled 12-pulse rectifier at DC side. Sci China Tech Sci, 2011, 54: 3320–3331

    Article  MATH  Google Scholar 

  7. Tu Q R, Xu Z, Xu L. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE T Power Deliver, 2011, 26(3): 2009–2017

    Article  Google Scholar 

  8. Ding G J, Tang G F, Ding M, et al. Topology mechanism and modulation scheme of a new multilevel voltage source converter modular (in Chinese). Proc CSEE, 2009, 29(36): 1–8

    Google Scholar 

  9. Zhao X, Zhao C Y, Li G K, et al. Submodule capacitance voltage balancing of modular multilevel converter based on carrier phase shifted SPWM technique (in Chinese). Proc CSEE, 2011, 31(21): 48–55

    Google Scholar 

  10. Wang S S, Zhou X X, Tang G F, et al. Modeling of modular multi-level voltage source converter (in Chinese). Proc CSEE, 2011, 31(24): 1–8

    Google Scholar 

  11. Glinka M. Prototype of multiphase modular multilevel converter with 2 MW power rating and 17-level-output-voltage. Power Electronics Specialists Conference. Aachen, 2004

    Google Scholar 

  12. Rohner S, Bernet S, Hiller M, et al. Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE T Ind Electron, 2010, 57(8): 2633–2642

    Article  Google Scholar 

  13. Li Q, He Z Y, Tang G F, et al. A space-vector PWM method for a new type of modular multilevel converter (in Chinese). Autom Elec Power Syst, 2010, 34(22): 75–79, 123

    Google Scholar 

  14. Guan M Y, Xu Z, Pan W Y, et al. Analytical calculation of fundamental wave and harmonic characteristics for nearest level modulation (in Chinese). High Voltage Eng, 2010, 36(5): 1327–1332

    Google Scholar 

  15. Tu Q R, Xu Z, Zheng X, et al. Mechanism analysis on the circulating current in modular multilevel converter based HVDC (in Chinese). High Voltage Eng, 2010, 36(2): 547–552

    Google Scholar 

  16. Guan M Y, Xu Z. Optimized capacitor voltage balancing control for modular multilevel converter based VSC-HVDC system (in Chinese). Proc CSEE, 2011, 31(12): 9–14

    Google Scholar 

  17. Marquardt R. Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications. IEEE International Power Electronics Conference (IPEC). Sapporo: IEEE, 2010. 502–507

    Google Scholar 

  18. Tu Q R, Xu Z. Dissipation analysis of MMC-HVDC base on junction temperature feedback method (in Chinese). High Voltage Eng, 2012, 38(6): 1506–1512

    MathSciNet  Google Scholar 

  19. Ilves K, Antonopoulos A, Norrga S, et al. Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters. IEEE T Power Electron, 2012, 27(1): 57–68

    Article  Google Scholar 

  20. Song Q, Liu W H, Li X Q, et al. A steady-state analysis method for a modular multilevel converter. IEEE T Power Electron, 2013, 28(8): 3702–3713

    Article  Google Scholar 

  21. Zhou Y B, Jiang D Z, Guo J, et al. Analysis of sub-module capacitor voltage ripples and circulating currents in modular multilevel converters (in Chinese). Proc CSEE, 2012, 32(24): 8–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Xu, Z., Xue, Y. et al. Theoretical analysis of the harmonic characteristics of modular multilevel converters. Sci. China Technol. Sci. 56, 2762–2770 (2013). https://doi.org/10.1007/s11431-013-5331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5331-1

Keywords

Navigation