Skip to main content
Log in

Advance in research of several types of streaming of pulse tube refrigerators

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The pulse tube refrigerator (PTR) is a promising small-scale cryocooler. This paper first briefly introduces the history of the pulse tube refrigerator. It has pointed out that technology improvements and theoretical developments of the pulse tube refrigerator closely relate with the internal streaming effects. Then the discovering history and classification of the streaming or DC (direct current) flow effect are summarized. It proposes for the first time that the physical significance of the streaming contains the driving mechanisms and the transport mechanisms. It demonstrates that the driving mechanisms are the asymmetry of fluid flow and temperature while the transport mechanisms are a loop or vorticity, which transmits nonlinear dissipations. The important advancements have been made over the past two decades all over the world in research of streaming of the pulse tube refrigerator including Gedeon DC flow, Rayleigh streaming, the third type of DC flow and the regenerator circulation. With regard to Gedeon DC flow, theoretical and experimental analyses have been made and different suppression methods are summarized. In the aspect of Rayleigh streaming, it mainly focuses on the analytical solution of the second-order mass flow and the research of tapered pulse tubes. In particular, limited research on the third type of DC flow and regenerator circulation is presented. The experimental measurement techniques of streaming also are summarized. Finally, this paper briefly discusses the key scientific and technical issues of the current research, and foretells the future development trends of streaming research in PTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radebaugh R. A review of pulse tube refrigeration. Adv Cryogenic Eng, 1990, 35: 1191–1205

    Google Scholar 

  2. Radebaugh R. Cryocoolers: the state of the art and recent developments. J Phys: Conden Matter, 2009, 21: 4219–4228

    Article  Google Scholar 

  3. Mikulin E I, Tarasov A A, Shkrebyonock M P. Low temperature expansion pulse tubes. Adv Cryogen Eng, 1984, 29: 629–637

    Article  Google Scholar 

  4. Liang J T, Zhou Y, Zhu W X. Development of a single-stage pulse tube refrigerator capable of reaching 49 K. Cryogenics, 1990, 30: 49–51

    Article  Google Scholar 

  5. Zhu S W, Wu P Y, Chen Z Q. Double inlet pulse tube refrigerators: an important improvement. Cryogenics, 1990, 30: 514–520

    Article  Google Scholar 

  6. Kanao K, Watanabe N, Kanazawa Y. A miniature pulse tube refrigerator for temperatures below 100K. Cryogenics, 1994, 34(Suppl): 167–170

    Article  Google Scholar 

  7. Backhaus S, Swift G W. A thermoacoustic-Stirling heat engine. Nature, 1999, 399: 335–338

    Article  Google Scholar 

  8. Seki N, Yamasaki S, Yuyama J, et al. Temperature Stability of Pulse Tube Refrigerators. Proceedings of the 16th International Cryogenic Engineering Conference, Japan, 1996

    Google Scholar 

  9. Gedeon D. DC gas flows in Stirling and pulse tube cryocoolers. Cryocoolers, 1996, 9: 385–392

    Google Scholar 

  10. Swift G W. Thermoacoustics: A unifying perspective for some engines and refrigerators. Los Alamos: Acoustical Society of America, 1999

    Google Scholar 

  11. Olson J R, Swift G W. Acoustic streaming in pulse tube refrigerators: Tapered pulse tubes. Cryogenics, 1997, 37: 769–776

    Article  Google Scholar 

  12. Rayleigh L. On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos Trans Roy Soc London Ser A, 1883, 175: 1–21

    Article  Google Scholar 

  13. Mironov M, Gusev V, Auregan Y, et al. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices. J Acoust Soc Amer, 2002, 112: 441–445

    Article  Google Scholar 

  14. Liang W, De Waele. A new type of streaming in pulse tubes. Cryogenics, 2007, 47: 468–473

    Article  Google Scholar 

  15. Zhou Y, Gu C, Cai H K. The third type DC flow in pulse tube cryocooler. Sci China Ser E-Tech Sci, 2009, 52: 3491–3496

    Article  Google Scholar 

  16. Gu C, Zhou Y, Wang J J, et al. Experimental discovery and verification of the third type of DC gas flow in pulse tube cryocooler. Cryogenics, 2011, 51: 157–160

    Article  Google Scholar 

  17. Gu C, Zhou Y, Wang J J, et al. CFD analysis of nonlinear processes in pulse tube refrigerators: Streaming induced by vortices. Int J Heat Mass Transfer, 2012, 55: 7410–7418

    Article  Google Scholar 

  18. Dietrich M, Yang L W, Thummes G. High-power Stirling-type pulse tube cryocooler: Observation and reduction of regenerator temperature-inhomogeneities. Cryogenics, 2007, 47: 306–314

    Article  Google Scholar 

  19. Landau L D, Lifshitz E M. Fluid Mechanics. New York: Pergamon Press, 1987

  20. Boluriaan S, Morris J. Acoustic streaming: from Rayleigh to today. Int J Aeroacoust, 2003, 2: 255–292

    Article  Google Scholar 

  21. Sobey I. Observation of waves during oscillatory channel flow. J Fluid Mech, 1985, 151: 395–426

    Article  Google Scholar 

  22. Ju Y L, Wang C, Zhou Y. Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics, 1997, 37: 357–361

    Article  Google Scholar 

  23. Ju Y L, Wang C, Zhou Y. Dynamic experimental investigation of a multi-bypass pulse tube refrigerator (in Chinese). J Eng Thermophys, 1997, 18: 413–416

    Google Scholar 

  24. Charles I, Duband L, Ravex A. Permanent flow in low and high frequency pulse tube coolers-Experimental results. Cryogenics, 1999, 39:777–782

    Article  Google Scholar 

  25. Backhaus S, Swift G W. A thermoacoustic-Stirling heat engine: Detailed study. J Acoust Soc Am, 2000, 107: 3148–3166

    Article  Google Scholar 

  26. Wang C, Thummes G, Heiden C. Control of DC gas flow in a single-stage double-inlet pulse tube cooler. Cryogenics, 1998, 38: 843–847

    Article  Google Scholar 

  27. Wang C, Thummes G, Heiden C. Effects of DC gas flow on performance of two-stage 4 K pulse tube coolers. Cryogenics, 1998, 38: 689–695

    Article  Google Scholar 

  28. Liang J T, Zhou Y, Zhu W X, et al. Study on miniature pulse tube cryocooler for space application. Cryogenics, 2000, 40: 229–233

    Article  Google Scholar 

  29. Chen G, Qui L, Zheng J, et al. Experimental study on a double-orifice two-stage pulse tube refrigerator. Cryogenics, 1997, 37: 271–273

    Article  Google Scholar 

  30. Yang L W, Zhou Y, Liang J T. DC flow analysis and second orifice version pulse tube refrigerator. Cryogenics, 1999, 39: 187–192

    Article  Google Scholar 

  31. Shiraishi M, Takamatsu K, Murakami M. Visualization of DC gas flows in a double-inlet pulse tube refrigerator with a second orifice valve. Cryocoolers, 2002, 11: 371–379

    Google Scholar 

  32. Hu J Y, Luo E C, Wu Z H, et al. Investigation of an innovative method for DC flow suppression of double-inlet pulse tube coolers. Cryogenics, 2007, 47: 287–291

    Article  Google Scholar 

  33. Swift G W, Gardner D L, Backhaus S. Acoustic recovery of lost power in pulse tube refrigerators. J Acoust Soc Am, 1999, 105: 711–724

    Article  Google Scholar 

  34. Zhu S W, Nogawa M, Inoue T. Analysis of DC gas flow in GM type double inlet pulse tube refrigerators. Cryogenics, 2009, 49: 66–71

    Article  Google Scholar 

  35. Rott N. Thermal driven acoustic oscillations, Part 3: Second order heat flux. Z Angew Math Phys, 1975, 26: 43–49

    Article  Google Scholar 

  36. Lee J M, Kittel P, Timmerhaus K D, et al. Flow patterns intrinsic to the pulse tube refrigerator. Proceedings of the 7th International Cryocooler Conference, Santa Fe, 1992. 125-139

  37. Lee J M, Kittel P, Timmerhaus K D, et al. Steady secondary momentum and enthalpy streaming in the pulse tube refrigerator. Cryocoolers, 1995, 8: 359–369

    Google Scholar 

  38. Sang H B, Eun S J, Sangkwon J. Two-dimensional model for tapered pulse tubes. Part 2: Mass streaming and streaming-driven enthalpy flow loss. Cryogenics, 2000, 40: 387–392

    Google Scholar 

  39. Shiraishi M, Ikeguchi T, Murakami M. Visualization of oscillatory flow phenomena in tapered pulse tube refrigerators. Adv Cryogen Eng, 2002, 47: 768–775

    Google Scholar 

  40. He Y L, Gao C M, Xu M Y, et al. Numerical simulation of conver gent and divergent tapered pulse tube cryocoolers and experimental verification. Cryogenics, 2001, 41: 699–704

    Article  Google Scholar 

  41. He Y L, Zhao C F, Ding W J, et al. Two-dimensional numerical simulation and performance analysis of tapered pulse tube refrigerator. Appl Therm Eng, 2007, 27: 1876–1882

    Article  Google Scholar 

  42. Antao D S, Farouk B. Numerical simulations of transport processes in a pulse tube cryocooler: Effects of taper angle. Int J Heat Mass Transfer, 2011, 54: 4611–4620

    Article  MATH  Google Scholar 

  43. Antao D S, Farouk B. Computational fluid dynamics simulations of an orifice type pulse tube refrigerator: Effects of operating frequency. Cryogenics, 2011, 51: 192–201

    Article  Google Scholar 

  44. Cha J S, Ghiaasiaan S M, Desai P V, et al. Multi-dimensional flow effects in pulse tube refrigerators. Cryogenics, 2006, 46: 658–665

    Article  Google Scholar 

  45. Gu C, Jin H, Zhou Y, et al. A novel Stirling type pulse tube cryocooler suppressing the third type of dc gas flow. Adv Cryogen Eng, 2012, 57: 214–220

    Google Scholar 

  46. So J H, Swift G W, Backhaus S. An internal streaming instability in regenerators. J Acoust Soc Am, 2006, 120: 1898–1909

    Article  Google Scholar 

  47. Sun D M, Dietrich M, Thummes G. Study on temperature inhomogeneity in regenerator of Stirling-type pulse tube cryocoolers. Chin Sci Bull, 2008, 53: 3062–3066

    Google Scholar 

  48. Andersen S K, Dietrich M, Carlsen H. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler. Int J Heat Mass Transfer, 2007, 50: 2795–2804

    Article  MATH  Google Scholar 

  49. Liu D H, Qiu L M, Gan Z H, et al. Study on temperature inhomogeneity in regenerator of high-power Stirling-type pulse tube cryocoolers based on two parallel regenerator model (in Chinese). Cryogenics, 2011, 6: 1–5

    Google Scholar 

  50. Imura J, Iwata N, Yamamoto H. Optimization of regenerator in high capacity Stirling type pulse tube cryocooler. Physica C, 2008, 468: 2178–2180

    Article  Google Scholar 

  51. Garaway I, Taylor R, Lewis M, et al. Characterizing flow and temperature Iistabilities within pPulse tube cryocoolers using infrared imaging. Cryocoolers, 2009, 15: 233–240

    Google Scholar 

  52. Biwa T, Tashiro Y, Ishigaki M. Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump. J Appl Phys, 2007, 101: 064914

    Article  Google Scholar 

  53. Chen Y Y, Zhang Y K, Dai W, et al. Minor losses of oscillating flow through a sudden change area (in Chinese). J Eng Thermophys, 2012, 33: 186–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, C., Tang, J., Wang, J. et al. Advance in research of several types of streaming of pulse tube refrigerators. Sci. China Technol. Sci. 56, 2690–2701 (2013). https://doi.org/10.1007/s11431-013-5327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5327-x

Keywords

Navigation