Skip to main content
Log in

Subsurface crack propagation under rolling contact fatigue in bearing ring

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The influences of subsurface cracks, distributing along the axial direction, on the rolling contact fatigue (RCF) faliure in a bearing ring are investigated. A realistic three-dimensional model of the bearing ring containing three subsurface cracks is used to evaluate the fatigue crack propagation based on stress intensity factor (SIF) calculations. Moreover, the distributions of the subsurface cracks along the axial direction are varied to study their effects on RCF. The results provide valuable guidelines for enhanced understanding of RCF in bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hua L, Zhao Z Z. The extremum parameters in ring rolling. J Mater Process Tech, 1997, 69: 273–276

    Article  Google Scholar 

  2. Hua L, Mei X S, Wu X T. Vibration and control in ring rolling process. T Nonferr Metal Soc, 1999, 9: 213–217

    Google Scholar 

  3. Allwood J M, Tekkaya A E, Stanistreet T F. The development of ring rolling technology. Steel Res Int, 2005, 76: 491–507

    Google Scholar 

  4. Hua L, Qian D S, Pan L B. Deformation behaviors and conditions in L-section profile cold ring rolling. J Mater Process Tech, 2009, 209: 5087–5096

    Article  Google Scholar 

  5. Ryttberg K, Wedel M K, Recina V. The effect of cold ring rolling on the evolution of microstructure and texture in 100cr6 steel. Mate Sci Eng A-Struct, 2010, 527: 2431–2436

    Article  Google Scholar 

  6. Wang X K, Hua L. On-line measurement method for various guide modes of vertical ring rolling mill. Measurement, 2011, 44: 685–691

    Article  Google Scholar 

  7. Taraf M, Zahaf E H, Oussouaddi O, et al. Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel. Tribol Int, 2010, 43: 585–593

    Article  Google Scholar 

  8. Kabo E, Ekberg A. Material defects in rolling contact fatigue of railway wheels—The influence of defect size. Wear, 2005, 258: 1194–1200

    Article  Google Scholar 

  9. Kabo E. Material defects in rolling contact fatigue—Influence of overloads and defect clusters. Int J Fatigue, 2002, 24: 887–894

    Article  Google Scholar 

  10. Kabo E, Ekberg A. Fatigue initiation in railway wheels—A numerical study of the influence of defects. Wear, 2002, 253: 26–34

    Article  Google Scholar 

  11. Balcombe R, Fowell M T, Olver A V, et al. A coupled approach for rolling contact fatigue cracks in the hydrodynamic lubrication regime: The importance of fluid/solid interactions. Wear, 2011, 271: 720–733

    Article  Google Scholar 

  12. Bogdański S, Lewicki P. 3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails. Wear, 2008, 265: 1356–1362

    Article  Google Scholar 

  13. Fletcher D I, Hyde P, Kapoor A. Modelling and full-scale trials to investigate fluid pressurisation of rolling contact fatigue cracks. Wear, 2008, 265: 1317–1324

    Article  Google Scholar 

  14. Akama M, Mori T. Boundary element analysis of surface initiated rolling contact fatigue cracks in wheel/rail contact systems. Wear, 2002, 253: 35–41

    Article  Google Scholar 

  15. Ringsberg J W. Life prediction of rolling contact fatigue crack initiation. Int J Fatigue, 2001, 23: 575–586

    Article  Google Scholar 

  16. Deng S, Hua L, Han X H, et al. Finite element analysis of fatigue life for deep groove ball bearing. P I Mech Eng L-J Mat, 2013, 227: 70–81

    Google Scholar 

  17. Choi Y. Influence of tool flank wear on performance of finish hard machined surfaces in rolling contact. Int J Fatigue, 2010, 32: 390–397

    Article  Google Scholar 

  18. Beretta S, Boniardi M, Carboni M, et al. Mode II fatigue failures at rail butt-welds. Eng Fail Anal, 2005, 12: 157–165

    Article  Google Scholar 

  19. Liu J T, Du P A, Zhang Z Y. A general model of fatigue crack growth under variable amplitude loading. Sci China Tech Sci, 2012, 55: 673–683

    Article  MATH  Google Scholar 

  20. Liu Y M, Liu L M, Mahadevan S. Analysis of subsurface crack propagation under rolling contact loading in railroad wheels using FEM. Eng Fract Mech, 2007, 74: 2659–2674

    Article  Google Scholar 

  21. Fletcher D I, Smith L, Kapoor A. Rail rolling contact fatigue dependence on friction, predicted using fracture mechanics with a three-dimensional boundary element model. Eng Fract Mech, 2009, 76: 2612–2625

    Article  Google Scholar 

  22. Liu Y, Mahadevan S. Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. Eng Fract Mech, 2007, 74: 332–345

    Article  Google Scholar 

  23. ABAQUS 6.9 Analysis User’S Manual. Dassault Systèmes Simulia Corp, 2009

  24. Benzley S E. Representation of singularities with isoparametric finite elements. Int J Numer Meth Eng, 1974, 8: 537–545

    Article  MATH  Google Scholar 

  25. Ayhan A O. Finite element analysis of nonlinear deformation mechanisms in semiconductor packages. Dissertation for Doctor Degree. Bethlehem: Lehigh University, 1999

    Google Scholar 

  26. Ayhan A O, Nied H F. Stress intensity factors for three-dimensional surface cracks using enriched elements. Int J Numer Methods Eng, 2002, 54: 899–921

    Article  MATH  Google Scholar 

  27. Paris P, Erdogan F. A critical analysis of crack propagation laws. Trans ASME, 1963, 85: 528–534

    Article  Google Scholar 

  28. Broke D. Elementary Engineering Fracture Mechanics. In: Nijhoff M, ed. 4th revised. Dordrecht, the Netherlands, Boston Hingham, MA: Kluwer, 1986

  29. Zener C. Elasticity and Anelasticity of Metals. Chicago: The University of Chicago Press, 1948

    Google Scholar 

  30. Averbach B L. Fracture of bearing steels. Met Prog, 1980, 118(8): 19–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XunPeng Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S., Han, X., Qin, X. et al. Subsurface crack propagation under rolling contact fatigue in bearing ring. Sci. China Technol. Sci. 56, 2422–2432 (2013). https://doi.org/10.1007/s11431-013-5291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5291-5

Keywords

Navigation