Skip to main content
Log in

Dynamic simulation based on Jacobian-free Newton-GMRES methods with adaptive preconditioner for power systems

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Dynamic simulation is one of the most complex and important computations for power systems researches. Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes, which increases the programming complexity of and limits the parallelizability of the whole simulation. In this paper, a new adaptive preconditioned Jacobian-free Newton-GMRES(m) method is proposed to be applied to dynamic simulations of power systems. This new method has totally Jacobian-free characteristics, which saves calculations and storages of Jacobian matrixes and features strong parallelizability. Moreover, several speedup strategies are introduced to enhance efficiency and parallelizability of overall computations. Numerical tests are carried out on IEEE standard test systems and results show that in series computing environment, simulations based on the proposed method have comparable speed to those based on classical Newton-Raphson methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pai M A, Sauer P W, Kulkarni A Y. A preconditioned iterative solver for dynamic simulation of power systems. Proceedings of the International Symposium Circuits and Systems, Seattle, 1995

    Google Scholar 

  2. Pai M A, Dag H. Iterative solver techniques in large scale power system computation. Proceedings of the 36th Conference on Decision and Control, San Diego, 1997.

    Google Scholar 

  3. Knoll D A, Keyes D E. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. J Comput Phys, 2004, 193: 357–397

    Article  MathSciNet  MATH  Google Scholar 

  4. Baglama J, Calvetti D, Golub G H, et al. Adaptively preconditioned GMRES algorithms. SIAM JSci Comput, 1999, 20(1): 243–269

    Article  MathSciNet  MATH  Google Scholar 

  5. Kharchenko S A, Yeremin A Y. Eigenvalue translation based preconditioners for the GMRES(k) method. Num Linear Algebra Appl, 1995, 2(1): 51–77

    Article  MathSciNet  MATH  Google Scholar 

  6. Soulaimani A, Salah N B, Saad Y. Enhanced GMRES acceleration techniques for some CFD problems. Int J Comput Fluid Dyn, 2002, 16(1): 1–20

    Article  Google Scholar 

  7. Cai X C, Keyes D E, Venkatakrishnan V. Newton-Krylov-Schwarz: an implicit solver for CFD. Proceedings of the 8th International Conference on Domain Decomposition Methods, Beijing, 1997

    Google Scholar 

  8. Oosterlee C W, Washio T. An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM J Sci Comput, 1998, 19(1): 87–110

    Article  MathSciNet  MATH  Google Scholar 

  9. Meza J C, Tuminaro R S. A multigrid preconditioner for the semiconductor equations. SIAM J Sci Comput, 1996, 17(1): 118–132

    Article  MathSciNet  MATH  Google Scholar 

  10. Pernice M, Tocci M D. A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations. SIAM J Sci Comput, 2001, 23(2): 398–418

    Article  MathSciNet  MATH  Google Scholar 

  11. Van Gijzen M B. A polynomial preconditioner for the GMRES algorithm. J Comput Appl Math, 1995, 59(1): 91–107

    Article  MathSciNet  MATH  Google Scholar 

  12. Joubert W. A robust GMRES-based adaptive polynomial preconditioning algorithm for nonsymmetric linear systems. SIAM J Sci Comput, 1994, 15: 427–439

    Article  MathSciNet  MATH  Google Scholar 

  13. Saad Y. Analysis of augmented Krylov subspace methods. SIAM J Matrix Anal Appl, 1997, 18(2): 435–449

    Article  MathSciNet  MATH  Google Scholar 

  14. Chapman A, Sadd Y. Deflated and augmented Krylov subspace techniques. Num Linear Algebra Appl, 1997, 4(1): 43–46

    Article  MATH  Google Scholar 

  15. Erhel J, Burrage K, Pohl B. Restarted GMRES preconditioned by deflation. J Comput Appl Math, 1996, 69(2): 303–318

    Article  MathSciNet  MATH  Google Scholar 

  16. Morgan R B. A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl, 1995, 16(4): 1154–1171

    Article  MathSciNet  MATH  Google Scholar 

  17. Morgan R B. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J Matrix Anal Appl, 2000, 21(4): 1112–1135

    Article  MathSciNet  MATH  Google Scholar 

  18. Moriya K, Nodera T. The DEFLATED-GMRES(m,k) method with switching the restart frequency dynamically. Num Linear Algebra Appl, 2000, 7: 569–584

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen Y, Shen C. A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations. IEEE T Power Syst, 2006, 21(3): 1096–1103

    Article  Google Scholar 

  20. Chen Y, Shen C, Wang J. Distributed transient stability simulation of power systems based on a Jacobian-free Newton-GMRES method. IEEE T Power Syst, 2009, 24(1): 146–156

    Article  Google Scholar 

  21. Huang S W, Chen Y, Shen C, et. al. Feasibility study on online DSA through distributed time domain simulations in WAN. IEEE T Power Syst, 2012, 27(3): 1214–1224

    Article  Google Scholar 

  22. Mei S W, Liu F, Xue A C. Semi-tensor Product Transient Analysis of Power System (in Chinese). Beijing: Tsinghua University Press, 2011

    Google Scholar 

  23. Broyden C G. A new method of solving nonlinear simultaneous equations. Comput J, 1969, 12(1): 94–99

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang U M, Gallvin K A. A new family of preconditioned iterative solvers for nonsymmetric linear systems. Appl Num Math, 1995, 19(3): 287–317

    Article  MATH  Google Scholar 

  25. Gay D M, Schnabel R B. Solving systems of nonlinear equations by Broyden’s method with projected updates. Cambridge, Massachusetts: National Bureau of Economic Research inc., 1977.

    Google Scholar 

  26. Chen L J, Chen Y, Mei S W. Real-time electromagnetic transient simulation algorithm for integrated power systems based on network level and component level parallelism. Sci China Tech Sci, 2012, 55(1): 1–10

    MathSciNet  MATH  Google Scholar 

  27. Crow M L, Chen J G. The multirate method for simulation of power system dynamics. IEEE T Power Syst, 1994, 9(3): 1684–1690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShaoWei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Chen, Y., Shen, C. et al. Dynamic simulation based on Jacobian-free Newton-GMRES methods with adaptive preconditioner for power systems. Sci. China Technol. Sci. 56, 2037–2045 (2013). https://doi.org/10.1007/s11431-013-5279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5279-1

Keywords

Navigation