Skip to main content
Log in

Influence of orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional particle image velocimetry (PIV) is used to investigate the influence of the orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall. Both evolutions of vortical structures and statistical characteristics of flow fields at different orifice-to-wall distances are presented. It is found that different orifice-to-wall distances have different effects in terms of the vortex strength and impinging speed when the vortex rings are approaching the wall. The secondary vortex ring can be observed within the shear layer only when the dimensionless orifice-to-wall distance is close to or less than the dimensionless stroke length. Consequently, an appropriate orifice-to-wall distance plays a vital role in the sense of impingement effect. The statistical analysis of the flow field indicates that a wall jet forms after impingement, while both the decay rate of the maximum radial velocity and the spreading rate of the half-width decrease with the increasing orifice-to-wall distance. The non-dimensional wall jet velocity profiles at different orifice-to-wall distances all exhibit self-similar behaviors, which is consistent with the theoretical solution of the laminar wall jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith B L, Glezer A. The formation and evolution of synthetic jets. Phys Fluids, 1998, 10: 2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang J J, Shan R Q, Zhang C, et al. Experimental investigation of a novel two-dimensional synthetic jet. Eur J Mech B-Fluids, 2010, 29: 342–350

    Article  MATH  Google Scholar 

  3. Shuster J M, Smith D R. Experimental study of the formation and scaling of a round synthetic jet. Phys Fluids, 2007, 19: 045109

    Article  Google Scholar 

  4. Shan R Q, Wang J J. Experimental studies of the influence of parameters on axisymmetric synthetic jet. Sensor Actuat A-Phys, 2010, 157: 107–112

    Article  Google Scholar 

  5. Hao L S, Qiao Z D. Maximizing the effect of synthetic jet on airfoil separation flow control (in Chinese). J Northwest Polytech Univ, 2006, 24: 528–531

    Google Scholar 

  6. Wang J J, Feng L H, Xu C J. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Sci China Ser E-Tech Sci, 2007, 50: 550–559

    Article  MATH  Google Scholar 

  7. Feng L H, Wang J J. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J Fluid Mech, 2010, 662: 232–259

    Article  MATH  Google Scholar 

  8. Feng L H, Wang J J. Synthetic jet control of separation in the flow over a circular cylinder. Exp Fluids, 2012, 53: 467–480

    Article  MathSciNet  Google Scholar 

  9. Feng L H, Wang J J, Pan C. Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder. J Fluids Struct, 2010, 26: 900–917

    Article  Google Scholar 

  10. Feng L H, Wang J J, Pan C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys Fluids, 2011, 23: 014106

    Article  Google Scholar 

  11. Ma L Q, Feng L H. Experimental investigation on control of vortex shedding mode of a circular cylinder using synthetic jets placed at stagnation points. Sci China Tech Sci, 2013, 56: 158–170

    Article  Google Scholar 

  12. Cheng Z J, Ba Y L, Wang J J. Numerical investigation on separation control for flow over a bump with synthetic jet (in Chinese). J Beijing Univ Aeron Astron, 2012, 38: 886–890

    Google Scholar 

  13. Chen Z J, Wang J J. Numerical investigation on synthetic jet flow control inside an S-inlet duct. Sci China Tech Sci, 2012, 55: 2578–2584

    Article  Google Scholar 

  14. Wang D Q, Xia Z X, Luo Z B. Study on low speed primary jet vector controlled by synthetic jet actuator with an inclination angle (in Chinese). J Solid Rocket Tech, 2004, 27: 165–172

    Google Scholar 

  15. Luo Z B, Xia Z X, Hu J X, et al. Numerical simulation and mechanism investigation on equidirectional fuel-air/oxygen mixing enhanced by synthetic jet actuators (in Chinese). J Solid Rocket Tech, 2004, 27: 267–271

    Google Scholar 

  16. Wang L, Luo Z B, Xia Z X, et al. Review of actuators for high speed active flow control. Sci China Tech Sci, 2012, 55: 2225–2240

    Article  Google Scholar 

  17. Zhou Y, Bai H L. Recent advances in active control of turbulent boundary layers. Sci China Phys Mech Astron, 2011, 54: 1289–1295

    Article  Google Scholar 

  18. Glezer A, Amitay M. Synthetic jets. Annu Rev Fluid Mech, 2002, 34: 503–529

    Article  MathSciNet  Google Scholar 

  19. Luo Z B, Xia Z X. Advanced in synthetic jet technology and applications in flow control (in Chinese). Adv Mech, 2005, 35: 221–234

    Google Scholar 

  20. Zhang P F, Wang J J, Feng L H. Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Ser E-Tech Sci, 2008, 51: 1315–1344

    Article  Google Scholar 

  21. Pavlova A, Amitay M. Electronic cooling using synthetic jet impingement. J Heat Trans-TASME, 2006, 128: 897–907

    Article  Google Scholar 

  22. Ge M W, Xu C X, Cui G X. Transient response of Reynolds stress transport to opposition control in turbulent channel flow. Sci China Phys Mech Astron, 2011, 54: 320–328

    Article  Google Scholar 

  23. Chen L, Tang D B, Lu P, et al. Evolution of the vortex structures and turbulent spots at the late-stage of transitional boundary layers. Sci China Phys Mech Astron, 2011, 54: 986–990

    Article  Google Scholar 

  24. Jia Y X, Tang Z Q, Jiang N. Experimental investigation of Reynolds stress complex eddy viscosity model for coherent structure dynamics. Sci China Phys Mech Astron, 2011, 54: 1319–1327

    Article  Google Scholar 

  25. Cai W H, Li F C. Analysis of coherent structures in drag-reducing polymer solution flow based on proper orthogonal decomposition. Sci China Phys Mech Astron, 2012, 55: 854–860

    Article  Google Scholar 

  26. Kataoka K, Suguro M, Degawa H, et al. The effect of surface renewal due to large-scale eddies on jet impingement heat transfer. Int J Heat Mass Tran, 1987, 30: 559–567

    Article  Google Scholar 

  27. Chu C C, Wang C T, Hsieh C S. An experimental investigation of vortex motions near surfaces. Phys Fluids, 1993, A5: 662–676

    Google Scholar 

  28. Cheng M, Lou J, Luo L S. Numerical study of a vortex ring impacting a flat wall. J Fluid Mech, 2010, 660: 430–455

    Article  MathSciNet  MATH  Google Scholar 

  29. Arévalo G, Hernández R H, Nicot C, et al. Particle image velocimetry measurements of vortex rings head-on collision with a heated vertical plate. Phys Fluids, 2010, 22: 053604

    Article  Google Scholar 

  30. EI Hassan M, Assoum H H, Sobolik V, et al. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids, 2012, 52: 1475–1489

    Article  Google Scholar 

  31. Krishnan G, Mohseni K. An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet. Eur J Mech B-Fluids, 2010, 29: 269–277

    Article  MATH  Google Scholar 

  32. Xu Y, Feng L H, Wang J J. Experimental investigation of a synthetic jet impinging on a fixed wall. Exp Fluids, 2013, 54: 1512

    Article  Google Scholar 

  33. Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech, 1999, 387: 353–396

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu Y, Christensen K T. Population trends of spanwise vortices in wall turbulence. J Fluid Mech, 2006, 568: 55–76

    Article  MATH  Google Scholar 

  35. Pan C, Wang H P, Wang J J. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol, 2013, 24: 055305

    Article  Google Scholar 

  36. Walker J D A, Smith C R, Cerra A W, et al. Impact of a vortex ring on a wall. J Fluid Mech, 1987, 181: 99–140

    Article  Google Scholar 

  37. Lim T T, Nickels T B, Chong M S. A note on the cause of rebound in the head-on collision of a vortex ring with a wall. Exp Fluids, 1991, 12: 41–48

    Google Scholar 

  38. Couch L D, Krueger P S. Experimental investigation of vortex rings impinging on inclined surfaces. Exp Fluids, 2011, 51: 1123–1138

    Article  Google Scholar 

  39. Dabiri J O. Optimal vortex formation as a unifying principle in biological propulsion. Annu Rev Fluid Mech, 2009, 41: 17–33

    Article  MathSciNet  Google Scholar 

  40. Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation. J Fluid Mech, 1998, 360: 121–140

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiHao Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Feng, L. Influence of orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall. Sci. China Technol. Sci. 56, 1798–1806 (2013). https://doi.org/10.1007/s11431-013-5256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5256-8

Keywords

Navigation