Skip to main content
Log in

Methods for optical phase retardation measurement: A review

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Optical-phase-retardation elements are widely used in many fields. Accurate measurement of their phase retardation is crucial to the practical effect of the element’s processing and application. The development and present situation of the methods for optical phase retardation measurement are reviewed, with the wave plate, the most typical phase-retardation element, as an example. The latest research progress in this field is introduced; the principles and characteristics of individual measurement method are summarized and discussed. Three new methods based on laser frequency splitting or laser feedback are presented in detail, in which the laser is not only regarded as a light source but also plays a role of sensor. Moreover, no standard wave plates are needed and arbitrary phase retardation can be measured. Traceability, high precision and high repeatability are achieved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J Z. Handbook of Optics (in Chinese). Xian: Shanxi Science and Technology Press, 2010. 1181–1201

    Google Scholar 

  2. Kliger D S, Lewis J W, Randall C E. Polarized Light in Optics and Spectroscopy. Boston: Academic Press, 1990. 39–52

    Google Scholar 

  3. Kothiyal M P, Delisle C. Polarization component phase shifters in phase shifting interferometry: Error analysis. Opt Acta, 1986, 33(6): 787–793

    Article  Google Scholar 

  4. Jin G F, Li J Z. Laser Metrology (in Chinese). Beijing: Science Press, 1998. 228–246

    Google Scholar 

  5. Hale P D, Day G W. Stability of birefringent linear retarders (waveplates). Appl Opt, 1988, 27(24): 5146–5153

    Article  Google Scholar 

  6. Xu S A, Chassagne L, Topcu S, et al. Phase control of ellipsometric interferometer for nanometric positioning system. Sci China Tech Sci, 2011, 54(12): 3424–3430

    Article  Google Scholar 

  7. Jerrard H G. Optical compensators for measurement of elliptical polarization. J Opt Soc Am, 1948, 38(1): 35–59

    Article  MathSciNet  Google Scholar 

  8. Plumb R C. Analysis of elliptically polarized light. J Opt Soc Am, 1960, 50(9): 892–894

    Article  Google Scholar 

  9. Grunstra B R, Perkins H B. A method for the measurement of optical retardation angles near 90 degrees. Appl Opt, 1966, 5(4): 585–587

    Article  Google Scholar 

  10. Hayden J E, Jacobs S D. Automated spatially scanning ellipsometer for retardation measurements of transparent materials. Appl Opt, 1993, 32(31): 6256–6263

    Article  Google Scholar 

  11. Xue Q W, Li G H. Half-shade method for measuring the phase retardation of quarter-wave plate (in Chinese). J Optoelectronics Laser, 1998, 9(2): 150–151

    Google Scholar 

  12. Pluta M. Accuracy of microinterferometric measurements of optical-path differences by means of half-shade method. J Microsc, 1971, 93(2): 83–100

    Article  Google Scholar 

  13. Hao D Z, Song L K, Wu F Q, et al. Intelligentized measurement of wave plate phase retardation with beam-splitting differential method (in Chinese). J Optoelectronics Laser, 2005, 16(5): 601–604

    Google Scholar 

  14. Williams P A, Rose A H, Wang C M. Rotating-polarizer polarimeter for accurate retardance measurement. Appl Opt, 1997, 36(25): 6466–6472

    Article  Google Scholar 

  15. Nechev G C. Analytical phase-measuring technique for retardation measurements. Appl Opt, 1994, 33(28): 6621–6625

    Article  Google Scholar 

  16. Yan M, Gao Z S. Phase shifting method for measuring the phase retardation of wave plates (in Chinese). J Optoelectronics Laser, 2005, 16(2): 183–187

    Google Scholar 

  17. Wang P, Anand A. Full-field retardation measurement of a liquid crystal cell with a phase shift polariscope. Appl Opt, 2008, 47(24): 4391–4395

    Article  Google Scholar 

  18. Yang K, Zeng A J, Wang X Z, et al. Method for rapid measuring retardation of a quarter-wave plate based on simultaneous phase shifting technique. Chin Opt Lett, 2008, 6(9): 673–675

    Article  Google Scholar 

  19. Shyu L H, Chen C L, Su D C. Method for measuring the retardation of a wave plate. Appl Opt, 1993, 32(22): 4228–4230

    Article  Google Scholar 

  20. Zhang Y, Song F J, Li H Y, et al. Precise measurement of optical phase retardation of a wave plate using modulated-polarized light. Appl Opt, 2010, 49(30): 5837–5843

    Article  Google Scholar 

  21. Chen X J, Yan L S, Yao X S. Waveplate analyzer using binary magneto-optic rotators. Opt Express, 2007, 15(20): 12989–12994

    Article  Google Scholar 

  22. Zeng A J, Li F Y, Zhu L L, et al. Simultaneous measurement of retardance and fast axis angle of a quarter-wave plate using one photoelastic modulator. Appl Opt, 2011, 50(22): 4347–4352

    Article  Google Scholar 

  23. Hu J M, Zeng A J, Wang X Z. Method to measure phase retardation of wave plate based on photoelastic modulation (in Chinese). Acta Opt Sin, 2006, 26(11): 1681–1686

    Google Scholar 

  24. Wang B L, Hellman W. Accuracy assessment of a linear birefringence measurement system using a Soleil-Babinet compensator. Rev Sci Instrum, 2001, 72(11): 4066–4070

    Article  Google Scholar 

  25. Hou J F, Yu J, Wang D G, et al. Phase retardation measurement of wave plates based on the self-calibration method (in Chinese). Chin J Lasers, 2012, 39(4): 0408007-1–7

    Google Scholar 

  26. Lin Y, Zhou Z Y, Wang R W. Optical heterodyne measurement of the phase retardation of quarter-wave plate. Opt Lett, 1988, 13(7): 553–555

    Article  Google Scholar 

  27. Ren H L, Wang J Y, Lou L R, et al. Measuring phase retardation and fast axis azimuth of a wave plate using Michelson interferometer (in Chinese). Chin J Lasers, 2008, 35(2): 249–253

    Article  Google Scholar 

  28. Rochford K B, Wang C M. Accurate interferometric retardance measurements. Appl Opt, 1997, 36(25): 6473–6479

    Article  Google Scholar 

  29. Lee S Y, Lin J F, Lo Y L. Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach-Zehnder interferometer. Opt Lasers Eng, 2005, 43: 704–720

    Article  Google Scholar 

  30. Nakadate S. High precision retardation measurement using phase detection of Young’s fringes. Appl Opt, 1990, 29(2): 242–246

    Article  Google Scholar 

  31. Sankarasubramanian K, Venkatakrishnan P. A CCD-based polarization interferometric technique for testing waveplates. Opt Laser Technol, 1998, 30: 15–21

    Article  Google Scholar 

  32. Chiu M H, Chen C D, Su D C. Method for determining the fast axis and phase retardation of a wave plate. J Opt Soc Am A, 1996, 13(9): 1924–1929

    Article  Google Scholar 

  33. Chenault D B, Chipman R A. Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter. Appl Opt, 1993, 32(19): 3513–3519

    Article  Google Scholar 

  34. Cattaneo S, Zehnder O, Günter P, et al. Nonlinear optical technique for precise retardation measurements. Phys Rev Lett, 2002, 88(24): 243901-1–4

    Article  Google Scholar 

  35. Cattaneo S, Kauranen M. Application of second-harmonic generation to retardation measurements. J Opt Soc Am B, 2003, 20(3): 520–528

    Article  Google Scholar 

  36. Wilson S M, Vats V, Vaccaro P H. Time-domain method for characterizing retardation plates with high sensitivity and resolution. J Opt Soc Am B, 2007, 24(9): 2500–2508

    Article  Google Scholar 

  37. Read S C, Lai M, Cave T, et al. Intracavity polarimeter for measuring small optical anisotropies. J Opt Soc Am B, 1988, 5(9): 1832–1837

    Article  Google Scholar 

  38. Cheng X T, Li Y Z, Liu C, et al. Method for measuring the retardation of a wave plate (in Chinese). Chin J Lasers, 2003, 30(7): 651–653

    Google Scholar 

  39. Zhang Y, Zhang S L, Han Y M, et al. Method for the measurement of retardation of wave plates based on laser frequency-splitting technology. Opt Eng, 2001, 40(6): 1071–1075

    Article  MathSciNet  Google Scholar 

  40. Zong X B, Liu W X, Zhang S L. Measurement of retardations of arbitrary wave plates by laser frequency splitting. Opt Eng, 2006, 45(3): 033602-1–5

    Article  Google Scholar 

  41. Liu W X, Liu M, Zhang S L. Method for the measurement of phase retardation of any wave plate with high precision. Appl Opt, 2008, 47(30): 5562–5569

    Article  Google Scholar 

  42. Liu W X, Holzapfel W, Zhu J, et al. Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies. Opt Commun, 2009, 282: 1602–1606

    Article  Google Scholar 

  43. GB/T 26827-2011. Calibration method for measurement equipment of wave plate phase retardation (in Chinese). The national standard of the People’s Republic of China, 2011

    Google Scholar 

  44. Fei L G, Zhang S L, Zong X B. Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity. Opt Commun, 2005, 246: 505–510

    Article  Google Scholar 

  45. Fei L G, Li Y, Zhu J, et al. Polarization control in a He-Ne laser using birefringence feedback. Opt Express, 2005, 13(8): 3117–3122

    Article  Google Scholar 

  46. Chen W X, Li H H, Zhang S L, et al. Measurement of phase retardation of waveplate online based on laser feedback. Rev Sci Instrum, 2012, 83: 013101-1–3

    Google Scholar 

  47. Chen W X, Zhang S L, Long X W, et al. Phase retardation measurement by analyzing flipping points of polarization states in laser with an anisotropy feedback cavity. Opt Laser Technol, 2012, 44: 2427–2431

    Article  Google Scholar 

  48. Chen W X, Zhang S L, Long X W. Locking phenomenon of polarization flipping in He-Ne laser with a phase anisotropy feedback cavity. Appl Opt, 2012, 51(7): 888–893

    Article  Google Scholar 

  49. Chen W X, Zhang S L, Long X W. Internal stress measurement by laser feedback method. Opt Lett, 2012, 37(13): 2433–2435

    Article  Google Scholar 

  50. Tan Y D, Zhang S L. External anisotropic feedback effects on the phase difference behavior of output intensities in microchip Nd:YAG lasers. Appl Phys B, 2007, 89: 339–343

    Article  Google Scholar 

  51. Zhang P, Zhang S L, Tan Y D, et al. Output response in orthogonal directions of a He-Ne laser caused by birefringent-external-cavity feedback. Appl Phys B, 2012, 106: 657–662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiDong Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Tan, Y., Liu, W. et al. Methods for optical phase retardation measurement: A review. Sci. China Technol. Sci. 56, 1155–1164 (2013). https://doi.org/10.1007/s11431-013-5207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5207-4

Keywords

Navigation