Science China Technological Sciences

, Volume 56, Issue 5, pp 1129–1138 | Cite as

On ferroelectric domain polarization switching mechanism subject to an external electric field by simulations with the phase-field method

  • GuangZhao Zhou
  • YongXin Wang
  • Chong Liu
  • Zheng Chen


The ferroelectric domain formation (FDF) and polarization switching (FDPS) subjected to an external electric field are simulated using the phase-field (PF) method, and the FDPS mechanism under different external electric fields is discussed. The results show that the FDF is a process of nucleation and growth in ferroelectric without applying any external stress. Four kinds of parallelogram shaped ferroelectric domains are formed at the steady state, in which the 180° anti-phase domains regularly align along the −45° direction and the 90° anti-phase domains regularly distribute like a stepladder. Steady electric fields can rotate domain polarization by 90° and 180°, and force the orientation-favorite domains and the average polarization to grow into larger ones. The greater the steady electric field, the larger the average polarization at the steady state. In ferroelectrics subject to an alternating electric field, domain polarization switches to cause a hysteresis loop and an associated butterfly loop with the alternating electric field. The coercive field and remnant field are enhanced with the increase of the electric field frequency or strength, or with the decrease of temperature.


ferroelectric domain polarization switching external electric field phase-field method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    He Y S, Fan J H. A simplified model for domain switching of ferroelectric crystal. Chin J Solid Mech, 2004, 25(4): 371–376Google Scholar
  2. 2.
    Wang J, Shi S Q, Chen L Q, et al. Phase field simulations of ferroelectric/ ferroelastic polarization switching. Acta Mater, 2004, 52(3): 749–764CrossRefGoogle Scholar
  3. 3.
    Chen L Q. Phase field models for microstructure evolution. Annu Rev Mater Res, 2002, 32(1): 113–135CrossRefGoogle Scholar
  4. 4.
    Nambu S, Sagala D A. Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys Rev B, 1994, 50(9): 5838–5847CrossRefGoogle Scholar
  5. 5.
    Hu H L, Chen L Q. Computer simulation of 90° ferroelectric domain formation in two-dimensions. Mater Sci Eng A, 1997, 238(1): 182–191CrossRefGoogle Scholar
  6. 6.
    Hu H L, Chen L Q. Three-dimensional computer simulation of ferroelectric domain formation. J Am Ceram Soc, 1998, 81(3): 492–500CrossRefGoogle Scholar
  7. 7.
    Wang J, Li Y L, Chen L Q, et al. The effect of mechanical strains on the ferroelectric and dielectric properties of a model single crystal-Phase field simulation. Acta Mater, 2005, 53(8): 2495–2507CrossRefGoogle Scholar
  8. 8.
    Roy K M, Sarkar S, Dattagupta S. Evolution of 180°, 90° and vortex domains in ferroelectric films. Appl Phys Let, 2009, 95(19): 192905CrossRefGoogle Scholar
  9. 9.
    Zhong W L. Ferroelectric Physics. Beijing: Science Press, 1996Google Scholar
  10. 10.
    Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations. Compu Phys Commun, 1998, 108(2–3): 147–158MATHCrossRefGoogle Scholar
  11. 11.
    Zhu J Z, Chen L Q, Shen J, et al. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method. Phys Rev E, 1999, 60(4): 3564–3572CrossRefGoogle Scholar
  12. 12.
    Haun M J, Furman E, Jang S J, et al. Thermodynamic theory of PbTiO3. J Appl Phys, 1987, 62(8): 3331–3338CrossRefGoogle Scholar
  13. 13.
    Stolichnov I, Tagantsev A, Colla E, et al. Kinetics of polarization reversal in ferroelectric films: Role of domain nucleation and domain wall motion. Ceram Int, 2004, 30(7): 1095–1099CrossRefGoogle Scholar
  14. 14.
    Kim J D, Jo J Y, Kim H T, et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr, Ti)O3 capacitors. Appl Phys Lett, 2007, 91(13): 132903CrossRefGoogle Scholar
  15. 15.
    Zhang L Y, Yao X. Dielectric Physics. Xi’an: Xi’an Jiao Tong University Press, 1991Google Scholar
  16. 16.
    Wang H, Zhu J, Zhang X W, et al. Domain structure of adaptive orthorhombic phase in [110]-poled Pb(Mg1/3Nb2/3)O3-30.5%PbTiO3 single crystal. Appl Phys Lett, 2008, 92(13): 132906CrossRefGoogle Scholar
  17. 17.
    Iwata M, Katsuraya K, Aoyagi R, et al. Domain wall observations and the phase transition in Pb(Zn1/3Nb2/3)O3-8%PbTiO3 by AFM. Ferroelectrics, 2007, 347(1): 157–161CrossRefGoogle Scholar
  18. 18.
    Burnett T L, Comyn T P, Merson E, et al. Electron backscatter diffraction as a domain analysis technique in BiFeO3-PbTiO3 single crystals. IEEE T Ultrason Ferr, 2008, 55(5): 957–962CrossRefGoogle Scholar
  19. 19.
    Yao P, Zhang C L, Xue T, et al. The observation on the electric polarized inversion structure of ferroelectric domain in LiNbO3 crystals with ESEM. Mod Instrum, 2004, 10(5): 23–25Google Scholar
  20. 20.
    Yang S M, Jo J Y, Kim H T, et al. Ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys Rev B, 2010, 82(17): 174125CrossRefGoogle Scholar
  21. 21.
    Zheng X J, Lu J, Zhou Y C, et al. Evolution of domain structure and frequency effect on ferroelectric properties in BIT ferroelectrics. Trans Nonferrous Met Soc, 2007, 17(A01): s64–s68Google Scholar
  22. 22.
    Suryanarayana P, Bhattacharya K. Evolution of polarization and space charges in semiconducting ferroelectrics. J Appl Phys, 2012, 111(3): 034109CrossRefGoogle Scholar
  23. 23.
    So Y W, Kim D J, Noh T W, et al. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl Phys Lett, 2005, 86(9): 092905CrossRefGoogle Scholar
  24. 24.
    Ong L H, Musleh A. Tilley-Zeks Model in switching phenomena of ferroelectric films. Ferroelectrics, 2009, 380(1): 150–159CrossRefGoogle Scholar
  25. 25.
    Lohse O, Grossmann M, Boettger U, et al. Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films. J Appl Phys, 2001, 89(4): 2332–2336CrossRefGoogle Scholar
  26. 26.
    Picinin A, Lente M H, Eiras J A, et al. Theoretical and experimental investigations of polarization switching in ferroelectrics materials. Phys Rev B, 2004, 69(6): 064117CrossRefGoogle Scholar
  27. 27.
    Wu J, Li W F, Huang W B. Micromechanics analysis of the influence of temperature on the process of ferroelectric polarization reversal. Chin J Solid Mech, 2009, 30(4): 341–345Google Scholar
  28. 28.
    Yuan G L, Liu J M, Baba-Kishi K, et al. Switching fatigue of ferroelectric layered-perovskite thin films: Temperature effect. Mat Sci Eng B-Solid, 2005, 118(1–3): 225–228CrossRefGoogle Scholar
  29. 29.
    Tura V, Ricinschi D, Mitoseriu L, et al. Simulation of switching properties of ferroelectrics on the basis dipole lattice model. Jpn J Appl Phys, 1997, 36(4A): 2183–2191CrossRefGoogle Scholar
  30. 30.
    Tokumitsu E, Tanisake N, Ishiwara H. Partial switching kinetics of ferroelectric PbZrxTi1−xO3 thin films prepared by sol-gel technique. Jpn J Appl Phys, 1994, 33(9B): 5201–5206CrossRefGoogle Scholar
  31. 31.
    Omura M, Adachi H, Ishibashi Y. Simulations of ferroelectric characteristics using a one-dimensional lattice model. Jpn J Appl Phys, 1991, 30(9B): 2384–2387CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • GuangZhao Zhou
    • 1
  • YongXin Wang
    • 1
  • Chong Liu
    • 1
  • Zheng Chen
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations