Skip to main content
Log in

Integrated photonic orbital angular momentum devices and systems: Potentials and challenges

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Emerging applications based on optical beams carrying orbital angular momentum will likely require photonic integrated devices and circuits for miniaturization, improved performance and enhanced functionality. This paper reviews the state-of-the-art in the field of orbital angular momentum of light, reports recent developments in silicon integrated orbital angular momentum emitters, and discusses the applications potentials and challenges in applying orbital angular momentum of light in optical communications, quantum information systems, and optical sensing, imaging, and manipulation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beth R. Mechanical detection and measurement of the angular momentum of light. Phys Rev, 1936, 50(2): 115–125

    Article  MathSciNet  Google Scholar 

  2. Friese M, Nieminen T, Heckenberg N, et al. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998, 394: 348–350

    Article  Google Scholar 

  3. Allen L, Beijersbergen M, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 1992, 45(11): 8185–8189

    Article  Google Scholar 

  4. Beijersbergen M, Coerwinkel R, Kristensen M, et al. Helical-wave-front laser beams produced with a spiral phase plate. Opt Commun, 1994, 112(5–6): 321–327

    Article  Google Scholar 

  5. Bazhenov V, Vasnetsov M, Soskin M. Laser-beams with screw dislocations in their wavefronts. JETP Lett, 1990, 52(8): 429–431

    Google Scholar 

  6. Oemrawsingh S, van Houwelingen J, Eliel E, et al., Production and characterization of spiral phase plates for optical wavelengths. Appl Opt, 2004, 43(3): 688–694

    Article  Google Scholar 

  7. He H, Friese M, Heckenberg N, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett, 1995, 75(5): 826–829

    Article  Google Scholar 

  8. O’Neil A, MacVicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett, 2002, 88(5): 0536011–0536014

    Google Scholar 

  9. Paterson L, MacDonald M, Arlt J, et al. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914

    Article  Google Scholar 

  10. Gibson G, Courtial J, Padgett M, et al. Freespace information transfer using light beams carrying orbital angular momentum. Opt Express, 2004, 12(22): 5448–5456

    Article  Google Scholar 

  11. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett, 2005, 94(15): 153901–153904

    Article  Google Scholar 

  12. Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation. Appl Phys Lett, 2006, 88(22): 221102

    Article  Google Scholar 

  13. Gbur G, Tyson R. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A, 2008, 25(1): 225–230

    Article  Google Scholar 

  14. McGloin D, Simpson N, Padgett M. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Appl Opt, 1998, 37(3): 469–472

    Article  Google Scholar 

  15. Kumar R, Singh Mehta D, Sachdeva A, et al. Generation and detection of optical vortices using all fiber-optic system. Opt Commun, 2008, 281(13): 3414–3420

    Article  Google Scholar 

  16. Barreiro J, Wei T, and Kwiat P. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys, 2008, 4(4): 282–286

    Article  Google Scholar 

  17. Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412: 313–316

    Article  Google Scholar 

  18. Molina-Terriza G, Torres J, Torner L. Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett, 2001, 88(1): 013601

    Article  Google Scholar 

  19. Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys Rev Lett, 2002, 89(24): 240401

    Article  Google Scholar 

  20. Leach J, Padgett M, Barnett S, et al. Measuring the orbital angular momentum of a single photon. Phys Rev Lett, 2002, 88(25): 257901

    Article  Google Scholar 

  21. Barreiro J, Langford N, Peters N, et al. Generation of hyperentangled photon pairs. Phys Rev Lett, 2005, 95(26): 260501

    Article  Google Scholar 

  22. Stütz M, Gröblacher S, Jennewein T, et al. How to create and detect N-dimensional entangled photons with an active phase hologram. Appl Phys Lett, 2007, 90(26): 261114

    Article  Google Scholar 

  23. Nagali E, Sciarrino F, De Martini F, et al. Quantum interference by coherence transfer from spin to orbital angular momentum of photons. Phys Rev Lett, 2009, 103(1): 013601

    Article  Google Scholar 

  24. Nagali E, Sciarrino F, De Martini F, et al. Polarization control of single photon quantum orbital angular momentum states. Opt Express, 2009, 17(21): 18745–18759

    Article  Google Scholar 

  25. Nagali E, Sansoni L, Sciarrino F, et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics, 2009, 3(214): 720–723

    Article  Google Scholar 

  26. Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt Lett, 2002, 27(21): 1875–1877

    Article  Google Scholar 

  27. Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett, 2002, 27(13): 1141–1143

    Article  Google Scholar 

  28. Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett, 2006, 96(16): 163905

    Article  Google Scholar 

  29. Nieminen T, Stilgoe A, Heckenberg N, et al. Angular momentum of a strongly focused Gaussian beam. J Opt A: Pure Appl Opt, 2008, 10(11): 115005–115010

    Article  Google Scholar 

  30. Brasselet E, Murazawa N, Misawa H. Optical vortices from liquid crystal droplets. Phys Rev Lett, 2009, 103(10): 103903

    Article  Google Scholar 

  31. Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt Lett, 2002, 27(21): 1875–1877

    Article  Google Scholar 

  32. Bomzon Z, Kleiner V, Hasman E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett, 2001, 26(18): 1424–1426

    Article  Google Scholar 

  33. Niv A, Biener G, Kleiner V, et al. Manipulation of the Pancharatnam phase in vectorial vortices. Opt Express, 2006, 14(10): 4208–4220

    Article  Google Scholar 

  34. Moreno I, Davis J, Ruiz I, et al. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express, 2010, 18(7): 7173–7183

    Article  Google Scholar 

  35. Wang J, Yang J, Fazal I, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6: 488–496

    Article  Google Scholar 

  36. Fontaine N, Doerr C, Buhl L. Efficient multiplexing and demultiplexing of free-space orbital angutar momentum using photonic integrated circuits. In: Optical Fiber Communication Conference, OSA Technical Digest, Optical Society of America, Washington, DC, paper OTu1l.2, 2012

  37. Soskin M, Vasnetsov M. Singular optics. In: Progress in Optics, vol XLII. North-Holland: Elsevier, 2001

    Google Scholar 

  38. Santamato E. Photon orbital angular momentum: problems and perspectives. Fortschr Phys, 2004, 52(11–12): 1141–1153

    Article  MathSciNet  Google Scholar 

  39. Molina-Terriza G, Torres J, Torner L. Twisted photons. Nature Phys, 2007, 3: 305–310

    Article  Google Scholar 

  40. Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser Photon, 2008, 2(4): 299–313

    Article  Google Scholar 

  41. Allen L, Barnett S, Padgett M. Optical Angular Momentum. Bristol: Institute of Physics Publishing, 2003

  42. Padgett M, Courtial J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt Lett, 1999, 24(7): 430–432

    Article  Google Scholar 

  43. Politi A, Cryan M J, Rarity G J, et al. Silica-on-silicon waveguide quantum circuits. Science, 2008, 320(5876): 646–649

    Article  Google Scholar 

  44. Maurer C, Jesacher A, Bernet S, et al. SLM-Microscopy: what spatial light modulators can do for microscopy. Lasers Photon Rev, 2001, 5(1): 81–101

    Article  Google Scholar 

  45. Yu N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    Article  Google Scholar 

  46. Smit M, van der Tol J, Hill M. Moore’s law in photonics. Laser Photon Rev, 2012, 6(1): 1–13

    Article  Google Scholar 

  47. Doerr C, Buhl L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Opt Lett, 2011, 36(7): 1209–1211

    Article  Google Scholar 

  48. Cai X, Wang J, Strain M, et al. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

    Article  Google Scholar 

  49. Vahala K. Optical microcavities. Nature, 2003, 424: 839–846

    Article  Google Scholar 

  50. Matsko A, Savchenkov A, Strekalov D, et al. Whispering gallery resonators for studying orbital angular momentum of a photon. Phys Rev Lett, 2005, 95(14): 143904

    Article  Google Scholar 

  51. Prkna L, Hubalek M, Ctyroky J. Field modeling of circular microresonators by film mode matching. IEEE J Sel Top Quantum Electron, 2005, 11(1): 217–223

    Article  Google Scholar 

  52. Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435: 325–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiYuan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Chen, Y. & Yu, S. Integrated photonic orbital angular momentum devices and systems: Potentials and challenges. Sci. China Technol. Sci. 56, 579–585 (2013). https://doi.org/10.1007/s11431-012-5114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5114-0

Keywords

Navigation