Science China Technological Sciences

, Volume 56, Issue 1, pp 53–59 | Cite as

Geometric optimization of electrostatic fields for stable levitation of metallic materials

  • Liang Hu
  • HaiPeng Wang
  • LiuHui Li
  • BingBo WeiEmail author


Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials. The calculated launch voltage increases linearly with the distance between top and bottom electrodes. The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened. Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force. The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability. As a measure characterizing the intrinsic levitation ability of various materials, the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.


electrostatic levitation containerless processing capacitive induction space science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wert M J, Hofmeister W H, Bayuzick R J. Effect of dilute amounts of oxygen solute on nucleation of zirconium. J Appl Phys, 2003, 93(6): 3643–3651CrossRefGoogle Scholar
  2. 2.
    Chathoth S M, Damaschke B, Samwer K, et al. Thermophysical properties of Si, Ge, and Si-Ge alloy melts measured under microgravity. Appl Phys Lett, 2008, 93: 071902CrossRefGoogle Scholar
  3. 3.
    Aoyama T, Kuribayashi K. Novel criterion for splitting of plate-like crystal growing in undercooled silicon melts. Acta Mater, 2003, 51: 2297–2303CrossRefGoogle Scholar
  4. 4.
    Kelton K F, Lee G W, Gangopadhyay A K, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett, 2003, 90(19): 195504CrossRefGoogle Scholar
  5. 5.
    Brillo J, Pommrich A I, Meyer A. Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys Rev Lett, 2011, 107: 165902CrossRefGoogle Scholar
  6. 6.
    Mauro N A, Kelton K F. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids. Rev Sci Instrum, 2011, 82: 035114CrossRefGoogle Scholar
  7. 7.
    Rhim W K, Chung S K, Barber D, et al. An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev Sci Instrum, 1993, 64(10): 2961–2970CrossRefGoogle Scholar
  8. 8.
    Rulison A J, Watkins J L, Zambrano B. Electrostatic containerless processing system. Rev Sci Instrum, 1997, 68(7): 2856–2863CrossRefGoogle Scholar
  9. 9.
    Ishikawa T, Paradis P F, Yoda S. New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev Sci Instrum, 2001, 72(5): 2490–2495CrossRefGoogle Scholar
  10. 10.
    Félici N J. Forces et charges de petits objets en contact avec une électrode affectée d’un champ électrique. Rev Gén Elec, 1966, 75(10): 1145–1160Google Scholar
  11. 11.
    Pérez A T. Charge and force on a conducting sphere between two parallel electrodes. J Electrostat, 2002, 56: 199–217CrossRefGoogle Scholar
  12. 12.
    Colver G M. Dynamic and stationary charging of heavy metallic and dielectric particles against a conducting wall in the presence of a dc applied electric field. J Appl Phys, 1976, 47(11): 4839–4849CrossRefGoogle Scholar
  13. 13.
    Novick V J, Hummer C R, Dunn P F. Minimum dc electric field requirements for removing powder layers from a conductive surface. J Appl Phys, 1989, 65(8): 3242–3247CrossRefGoogle Scholar
  14. 14.
    Wu Y, Castle G S P, Inculet I I, et al. Induction charge on freely levitating particles. Powder Tech, 2003, 135–136: 59–64CrossRefGoogle Scholar
  15. 15.
    Jackson J D. Classical Electrodynamics. New York: Wiley, 1973Google Scholar
  16. 16.
    Hu L, Wang H P, Xie W J, et al. Electrostatic levitation under the single-axis feedback control condition. Sci China-Phys Mech Astron, 2010, 53(8): 1438–1444CrossRefGoogle Scholar
  17. 17.
    Okada J T, Ishikawa T, Watanabe Y, et al. Viscosity of liquid boron. Phys Rev B, 2010, 81: 140201 (R)Google Scholar
  18. 18.
    Sridharan G, Chung S, Elleman D, et al. Optical sample-position sensing for electrostatic levitation. Proc. of the SPIE-Meeting, Orlando, USA, 1989, 1118: 160–164Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations