Science China Technological Sciences

, Volume 56, Issue 1, pp 40–47 | Cite as

Theoretical calculation on permeation of gas molecules through crystalline poly (p-xylylene) (PPX) films



Molecular mechanics (MM) and the gradually reduced size (GRS) techniques were used to construct the crystalline poly-p-xylylene (PPX) films, including PPX N, PPX C and PPX D. The corresponding chain-end area of crystalline PPX films provides enough free volumes for adsorbing and transferring gas molecules. Then, the permeable properties of gases were calculated using Grand Canonical Monte Carlo (GCMC), NVT-Molecular Dynamics (MD) and cluster analysis methods. The calculated diffusion coefficients are in the same order of magnitude over a range of temperatures and pressures. And there is no permeation property of gases in the inner part of the crystalline PPX films.


crystalline parylene gas molecules diffusion sorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strel’tsov D R, Grigor’ev E I, Dmirtryakov P V, et al. Initial stages of growth of poly (p-xylylene) coatings: AFM study. Poly sci ser A, 2009, 51(8): 881–890CrossRefGoogle Scholar
  2. 2.
    Shih C Y, Chen Y, Tai Y C. Parylene strengthened thermal isolation technology for microfluidic system-on-chip applications. Sensor actuat A, 2006, 126(1): 270–276CrossRefGoogle Scholar
  3. 3.
    Musaev O R, Scott P, Wrobel J M, et al. UV laser ablation of parylene films from gold substrates. J Mater Sci, 2011, 46(1): 183–18CrossRefGoogle Scholar
  4. 4.
    Ahn J, Chung W J, Pinnau I, et al. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J Membrane Sci, 2010, 346(2): 280–287CrossRefGoogle Scholar
  5. 5.
    Neyertz S, Brown D. Influence of system size in molecular dynamics simulations of gas permeation in glassy polymers. Macromolecules, 2004, 37(26): 10109–10122CrossRefGoogle Scholar
  6. 6.
    Komarov P V, Veselov I N, Chu P P, et al. Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone) and Nafion. Chem Phys Lett, 2010, 487(4–6): 291–296CrossRefGoogle Scholar
  7. 7.
    Troisi A, Orlandi G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J Phys Chem A, 2006, 110(11): 4065–4070CrossRefGoogle Scholar
  8. 8.
    Suh M P, Moon H R, Lee E Y, et al. A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J Am Chem Soc, 2006, 128(14): 4710–4718CrossRefGoogle Scholar
  9. 9.
    Smalara K, Giełdo A, Bobrowski M, et al. Theoretical study of polymerization mechanism of p-xylylene based polymers. J Phys Chem A, 2010, 114(12): 4296–4303CrossRefGoogle Scholar
  10. 10.
    Yang X D, Wang L J, Wang C L, et al. Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes. Chem Mater, 2008, 20(9): 3205–3211CrossRefGoogle Scholar
  11. 11.
    Chen Y, Liu Q L, Zhu A M, et al. Molecular simulation of CO2/CH4 permeabilities in polyamide-imide isomers. J Membrane Sci, 2010, 348(1–2): 204–212CrossRefGoogle Scholar
  12. 12.
    Lu C H, Ni S J, Chen W K, et al. A molecular modeling study on small molecule gas transportation in poly (chloro-p-xylylene). Comput Mater Sci, 2010, 49(1): 565–569CrossRefGoogle Scholar
  13. 13.
    Shih C Y, Harder T A, Tai Y C. Yield strength of thin flim parylene C. Microsyst Tech, 2004, 10(5): 407–411CrossRefGoogle Scholar
  14. 14.
    Chang K S, Tung C C, Wang K S, et al. Free volume analysis and gas transport mechanisms of aromatic polyimide membranes: a molecular simulation study. J Phys Chem B, 2009, 113(29): 9821–9830CrossRefGoogle Scholar
  15. 15.
    Fox T G, Flory P J. Second order transition temperatures and telated properties of polystyrene, I. Influence of molecular weight. J Appl Phys., 1950, 21(6): 581–591CrossRefGoogle Scholar
  16. 16.
    Gurnee E F. Theory of irientation and double refraction in polymers. J Appl Phys, 1954, 25(10): 1232–1240CrossRefGoogle Scholar
  17. 17.
    Lim F, Ke L, Wang W. Correlation between dark spot growth and pinhole size in organic light-emitting diodes. Appl Phys Lett, 2001, 78(15): 2116–2118CrossRefGoogle Scholar
  18. 18.
    Seiji I, Masaki T, Masayoshi O, et al. Structural analysis of β form poly (p-xylylene) starting form a high resolution image. Polymer, 1983, 24(9): 1155–1161CrossRefGoogle Scholar
  19. 19.
    Milman V, Refson K, Clark S J, et al. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. J Mol Struct: Theochem, 2010, 954(1–3): 22–35CrossRefGoogle Scholar
  20. 20.
    Fried J R, Akhavi M S, Mark J E. Molecular simulation of gas permeability: poly (2,6-dimethyl-1, 4-phenylene oxide). J Membrane Sci, 1998, 149(1): 115–126CrossRefGoogle Scholar
  21. 21.
    Dafflon B, Irving J, Holliger K. Simulated annealing based conditional simulation for the local-scale characterization of heterogeneous aquifers. J Appl Geophys, 2009, 68(1): 60–70CrossRefGoogle Scholar
  22. 22.
    Gorham W F. A New, general synthetic method for the preparation of linear poly-p-xylylene. J Polym Sci Part A-1: Polym Chem, 1966, 4(12): 3027–3039CrossRefGoogle Scholar
  23. 23.
    Akihiko T, Norlakl F, Kolchl H, et al. Permeation of gases across the poly (chloro-p-xylylene). J Appl Polym Sci, 1994, 54(2): 219–229CrossRefGoogle Scholar
  24. 24.
    Demirel M C. Emergent properties of spatially organized poly (p-xylylene) films fabricated by vapor deposition. Coll Sur A, 2008, 321(1–3): 121–124CrossRefGoogle Scholar
  25. 25.
    Huang H L, Xu Y G, Yee L H. Effects of film thickness on moisture sorption, glass transition temperature and morphology of poly (chloro-p-xylylene) film. Polymer, 2005, 46(16): 5949–5955CrossRefGoogle Scholar
  26. 26.
    Merchant M E. Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys, 2009, 16(1): 267–275Google Scholar
  27. 27.
    Fundeanu I, Klee D, Kwakernaak A, et al. The effect of substituted poly (p-xylylene) on the quality of bonded joints when used as a primer replacement. Int J Adhesion & Adhesives, 2010, 30(2): 111–116CrossRefGoogle Scholar
  28. 28.
    Cavlek T V, Margan I G, Lepej S Z, et al. Seroprevalence, risk factors, and hepatitis C virus genotypes in groups with high-risk sexual behavior in Croatia. J Med Virol, 2009, 81(8): 1348–1353CrossRefGoogle Scholar
  29. 29.
    Song M X, Bian L, Zhou T L, et al. The adsorption capacity of clinoptilolite for nuclide strontium ions. J Sci Confer Pro, 2009, 1: 163–166CrossRefGoogle Scholar
  30. 30.
    Hu H X, Li X C, Fang Z M, et al. Small molecule gas sorption and diffusion in coal: Molecular simulation. Energy, 2010, 35(7): 2939–2944CrossRefGoogle Scholar
  31. 31.
    Jang C, Han B. Analytical and molecular simulation study of water condensation behavior in mesopores with closed ends. J Chem Phys, 2010, 132(10): 104702–104710CrossRefGoogle Scholar
  32. 32.
    Qin W, Li X, Bian W W, et al. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials, 2010, 31(5): 1007–1016CrossRefGoogle Scholar
  33. 33.
    Pavel D, Shanks R. Molecular dynamics simulation of diffusion of O2 and CO2 in blends of amphous poly (ethylene terephthalate) and related polyesters. Polymer, 2005, 46(16): 6135–6147CrossRefGoogle Scholar
  34. 34.
    Sommer J, Herzig C. Direct determination of grain-boundary and dislocation self-diffusion coefficients in silver from experiments in type-C kinetics. J Appl Phys., 2009, 72(7): 2758–2766CrossRefGoogle Scholar
  35. 35.
    Bezus A G, Kiselev A V, Lopatkin A A, et al. Molecular statistical calculation of thermodynamic characteristics of ethane adsorption by zeolites Nax and Nay. J Coll Int Sci, 1973, 45(2): 386–395CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqiChina
  2. 2.China Institute of Chemicals MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations