Science China Technological Sciences

, Volume 56, Issue 1, pp 25–31 | Cite as

Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing

  • AiLing Yang
  • Yun Yang
  • ZhenZhen Zhang
  • XiChang Bao
  • RenQiang Yang
  • ShunPin Li
  • Liang Sun


Nano-ZnO thin films composed of nanoparticles with sizes of 10–16 nm on silicon substrates at low temperature were prepared by sol-gel method. By placing the nano-ZnO thin films at room temperature or annealing at 100°C in air for 10 h intermittently, within a total 70 h annealing time, the evolution of PL spectra of the nano-ZnO thin films were studied in detail. As the annealing time increases, the PL peaks shift from violet to blue and green bands. The PL peaks at violet and blue bands decrease with the annealing time, but the PL peaks at green band are opposite. The PL spectra are related to the defects in the nano-ZnO thin films. The PL peaks positioned at 430 nm are mainly related to defects of zinc interstatials (Zni), oxygen vacancies and (Vo); the ones at 420 nm to oxygen interstitials (Oi), Zinc vacancies (Vzn), Zni; and the ones at 468 nm to Vzn, Zni, and charged oxygen interstatials(Vo+). The green luminescence is related to Oi, Vo and Zni. The evolutions of PL spectra and the defects are also related to the concentrations of Zn in the thin films, the thicknesses of the films and the annealing time. For the films with 0.5 M and 1.0 M Zn concentrations, after 20 h and 30 h annealing in air at 100°C, respectively, either placing them in air at room temperature or continuing anneal in air at 100°C, the PL spectra are stable. Under the low temperature annealing, Zni decreases with the annealing time, and Oi increases. Sufficient Oi favors to keep the nano-ZnO thin films stable. This result is important to nano-ZnO thin films as electron transport layers in inverted or tandem organic solar cells.


nano-ZnO thin films low temperature annealing PL spectra defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dutta S, Chattopadhyay S, Sarkar A, et al. Role of defects in tailoring structural, electronical and optical properties of ZnO. Prog Mater Sci, 2009, 54: 89–138CrossRefGoogle Scholar
  2. 2.
    Leong E S P, Yu S F. UV random lasing action in p-SiC(4H)/i-ZnO-SiO2 nanocomposite/n-ZnO: Al heterojunction diodes. Adv Mater, 2006, 18(13): 1685–1688CrossRefGoogle Scholar
  3. 3.
    Shabnam, Kant C R, Arun P. White-light emission from annealed ZnO: Si nanocomposite thin films. J Lumin, 2012, 132: 1744–1749CrossRefGoogle Scholar
  4. 4.
    Bian J M, Liu W F, Sun J C, et al. Synthesis and defect-related emission of ZnO based light emitting device with homo-and heterostructure. J Mater Proc Tech, 2007, 184: 451–454CrossRefGoogle Scholar
  5. 5.
    Wang D D, Xing G Z, Gao M, et al. Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays. J Phys Chem C, 2011, 115: 22729–2273CrossRefGoogle Scholar
  6. 6.
    Yilmazoglu O, Biethan J P, Evtukh A, et al. Field emission from ZnO whiskers under intervalley electron redistribution. Appl Surf Sci, 2012, 258(11): 4990–4993CrossRefGoogle Scholar
  7. 7.
    Karpyna V A, Evtukh A A, Semenenko M O, et al. Electron field emission from ZnO self-organized nanostructures and doped ZnO: Ga nanostructured films. Microelec J, 2009, 40(2): 229–231CrossRefGoogle Scholar
  8. 8.
    Long W C, Hu J, He J L, et al. Effects of manganese dioxide additives on the electrical characteristics of Al-doped ZnO varistors. Sci China Tech Sci, 2011, 54(8): 2204–2208CrossRefGoogle Scholar
  9. 9.
    Huang Y Q, Liu M D, Zeng Y K, et al. Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process. Mater Sci and Eng-B, 2001, 86(3): 232–236CrossRefGoogle Scholar
  10. 10.
    Ohta H, Kamiya M, Kamiya T, et al. UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin Solid Films, 2003, 445(2): 317–321CrossRefGoogle Scholar
  11. 11.
    Shinde S S, Rajpure K Y. Fabrication and performance of N-doped ZnO UV photoconductive detector. J Alloys Comp, 2012, 522: 118–122CrossRefGoogle Scholar
  12. 12.
    Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization of ZnO UV detector. Appl Surf Sci, 2005, 240(1–4): 280–285CrossRefGoogle Scholar
  13. 13.
    Phan D T, Chung G S. Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sens Actuators B-Chem, 2012, 161(1): 341–348CrossRefGoogle Scholar
  14. 14.
    Zhang L X, Zhao J H, Lu H Q, et al. High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sens Actuators B-Chem, 2011, 160 (1): 364–370CrossRefGoogle Scholar
  15. 15.
    Hemmati S, Firooz A A, Khodadadi A A, et al. Nanostructured SnO2-ZnO sensors: Highly sensitive and selective to ethanol. Sens Actuators B-Chem, 2011, 160(1): 1298–1303CrossRefGoogle Scholar
  16. 16.
    Karageorgopoulos D, Stathatos E, Vitoratos E. Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells. J Power Sources, 2012, 219: 9–15CrossRefGoogle Scholar
  17. 17.
    Schwanitz K, Klein S, Stolley T, et al. Anti-reflective microcrystalline silicon oxide p-layer for thin-film silicon solar cells on ZnO. Sol Energy Mater Sol Cells, 2012, 105: 187–191CrossRefGoogle Scholar
  18. 18.
    Bekci D. R, Karsli A, Cakir A. C, et al. Comparison of ZnO interlayers in inverted bulk heterojunction solar cells. Appl Energy, 2012, 96: 417–421CrossRefGoogle Scholar
  19. 19.
    Martínez C, Canle M L, Fernández M I, et al. Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Appl Catal B-Enviro, 2011, 102(3–4): 563–571CrossRefGoogle Scholar
  20. 20.
    Lai O L, Meng M, Yu Y F, et al. Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl Catal B-Enviro, 2011, 105(3–4): 335–345CrossRefGoogle Scholar
  21. 21.
    Hu W H, Liu Y S, Yang H B, et al. ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter-amplification. Bios Bioelectron, 2011, 26(8): 3683–3687CrossRefGoogle Scholar
  22. 22.
    Wang Y H, Duan W J, Wu Z L, et al. Enormous enhancement of ZnO nanoroad photoluminescence. J Lumin, 2012, 132: 1885–1889CrossRefGoogle Scholar
  23. 23.
    Xu X Y, Xu C X, Dai J, et al. Evolutions of defects and blue-green emission in ZnO microwhiskers fabricated by vapor-phase transport. J Phys Chem Solids, 2012, 73: 858–862CrossRefGoogle Scholar
  24. 24.
    Reshchikov M A, Avrtin V, Izyumskaya N, et al. Anomalous shifts of blue and yellow luminescence bands in MBE-grown ZnO films. Physics B, 2007, 401–402: 374–377CrossRefGoogle Scholar
  25. 25.
    Reshchikov M A, El-Shaer A, Behrends A, et al. On quantum efficiency of photoluminescence in ZnO layers and nanostructures. Physics B, 2009, 404: 4813–4815CrossRefGoogle Scholar
  26. 26.
    Huang Y C, Li Z Y, Chen H H, et al. Characterizations of gallium-doped ZnO films on glass substrate prepared by atmospheric pressure metal-organic chemical vapor deposition. Thin Solid Films, 2009, 517(18): 5537–5542CrossRefGoogle Scholar
  27. 27.
    Fu Z X, Lin B X, Zu J. Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition. Thin Solid Films, 2002, 402(1–2): 302–306CrossRefGoogle Scholar
  28. 28.
    Henley S J, Ashfold M N R, Cherns D. The growth of transparent conducting ZnO films by pulsed laser ablation. Surf Coat Tech, 2004, 177–178: 271–276CrossRefGoogle Scholar
  29. 29.
    Gafiychuk V V, Ostafiychuk B K, Popovych D I, et al. ZnO nanoparticles produced by reactive laser ablation. Appl Surf Sci, 2011, 257(20): 8396–8401CrossRefGoogle Scholar
  30. 30.
    Ievtushenko A I, Karpyna V A, Lazorenko V I, et al. High quality ZnO films deposited by radio-frequency magnetron sputtering using layer by layer growth method. Thin Solid Films, 2010, 518(16): 4529–4532CrossRefGoogle Scholar
  31. 31.
    Amekura H, Sakuma Y, Yoshitake M, et al. Defect-band-free luminescence from ZnO nanoparticles fabricated by ion implantation and thermal oxidation. Nucl Instrum Meth B, 2007, 257(1–2): 64–67CrossRefGoogle Scholar
  32. 32.
    Chen Z T, Gao L. A facile route to ZnO nanorod arrays using wet chemical method. J Cryst Growth, 2006, 293(2): 522–527CrossRefGoogle Scholar
  33. 33.
    Kumar R S, Sathyamoorthy R, Sudhagar P, et al. Effect of aluminum doping on the structural and luminescent properties of ZnO nanoparticles synthesized by wet chemical method. Physica E: Low-dim Sys Nanostru, 2011, 43(6): 1166–1170CrossRefGoogle Scholar
  34. 34.
    Zhang Y Z, Chung J Y, Lee J Y, et al. Synthesis of ZnO nanospheres with uniform nanopores by a hydrothermal process. J Phys Chem Solids, 2011, 72(12): 1548–1553CrossRefGoogle Scholar
  35. 35.
    Wang C X, Zhang X D, Wang D F, et al. Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells. Sci China Tech Sci, 2010, 53(4): 1146–1149CrossRefGoogle Scholar
  36. 36.
    Hsieh P T, Chen Y C, Kao K S, et al. The ultraviolet emission mechanism of ZnO thin film fabricated by sol-gel technology. J Euro Ceram Soc, 2007, 27(13–15): 3815–3818CrossRefGoogle Scholar
  37. 37.
    Segawa H, Sakurai H, Izumi R, et al. Low-temperature crystallization of friented ZnO film using seed layers prepared by sol-gel method. J Mater Sci, 2011, 46: 3537–3543CrossRefGoogle Scholar
  38. 38.
    Raoufi D, Raoufi T. The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films. Appl Surf Sci, 2009, 255(11): 5812–5817CrossRefGoogle Scholar
  39. 39.
    Tam K H, Cheung C K, Leung Y H, et al. Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B, 2006, 110(42): 20865–20871CrossRefGoogle Scholar
  40. 40.
    Li J Y, Li L, Xu J P, et al. Controlled growth of ZnO nanorods by polymer template and their photoluminescence properties. Sci China Ser E-Tech Sci, 2009, 52(4): 888–892MATHCrossRefGoogle Scholar
  41. 41.
    Chandrinou C, Boukos N, Stogios C, et al. PL study of oxygen defect formation in ZnO nanorods. Microelectron J, 2009, 40: 296–298CrossRefGoogle Scholar
  42. 42.
    Jiang Q P, Liu Y Ju, Kan H E, et al. Microwave-assisted synthesis of hexagonal structure ZnO micro-tubes. Mater Lett, 2012, 81(15): 198–201CrossRefGoogle Scholar
  43. 43.
    Zhou J, Wang Z D, Wang L, et al. Synthesis of ZnO hexagonal tubes by a microwave heating method. Superlattices Microstruct, 2006, 39(1–4): 314–318CrossRefGoogle Scholar
  44. 44.
    Yousefi R, Zak A K. Growth and characterization of ZnO nanowires grown on the Si(1 1 1) and Si(1 0 0) substrates: Optical properties and biaxial stress of nanowires. Mater Sci Semiconduct Process, 2011, 14(2): 170–174CrossRefGoogle Scholar
  45. 45.
    Luo L, Zhang Y F, Mao S S, et al. Fabrication and characterization of ZnO nanowires based UV photodiodes. Sens Actuators A-Physical, 2006, 127(2): 201–206CrossRefGoogle Scholar
  46. 46.
    Mir N, Salavati Ni M, Davar F. Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem Eng J, 2012, 181–182: 779–789CrossRefGoogle Scholar
  47. 47.
    Wang Y X, Li X Y, Wang N, et al. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep Purif Technol, 2008, 62(3): 727–732CrossRefGoogle Scholar
  48. 48.
    Saito G, Hosokai S, Akiyama T. Synthesis of ZnO nanoflowers by solution plasma. Mater Chem Phys, 2011, 130(1–2): 79–83CrossRefGoogle Scholar
  49. 49.
    Merz T A, Doutt D R, Bolton T, et al. Nanostructure growth-induced defect formation and band bending at ZnO surfaces. Surf Sci, 2011, 605: 120–123CrossRefGoogle Scholar
  50. 50.
    Xu X Y, Xu C X, Dai J, et al. Evolutions of defects and blue-green emission in ZnO microwhiskers fabricated by vapor-phase transport. J Phys Chem Solids, 2012, 73: 858–862CrossRefGoogle Scholar
  51. 51.
    Calestani D, Zha M, Mosca R, et al. Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens Actuators B-Chem, 2010, 144(2): 472–478CrossRefGoogle Scholar
  52. 52.
    Tawale J S, Dey K K, Pasricha R, et al. Synthesis and characterization of ZnO tetrapods for optical and antibacterial applications. Thin Solid Films, 2010, 519(3): 1244–1247CrossRefGoogle Scholar
  53. 53.
    Meyer B K, Alves H, Hofmann D M, et al. Bound exciton and donor-acceptor pair recombinations in ZnO. Phys Stat Sol B, 2004, 241: 231–260CrossRefGoogle Scholar
  54. 54.
    Jayakumar O D, Sudarsan V, Sudakar C, et al. Green emission from ZnO nanorods: Role of defects and morphology. Scripta Mater, 2010, 62: 662–665CrossRefGoogle Scholar
  55. 55.
    Ong H C, Du G T. The evolution of defect emission in oxygen-deficient and -surplus ZnO thin films: the implication of different growth modes. J Cryst Growth, 2004, 265: 471–475CrossRefGoogle Scholar
  56. 56.
    Song H, Kim J H, Kim E K. Studies of defect states of ZnO thin films under annealing conditations. Microelectron J, 2009, 40: 313–315CrossRefGoogle Scholar
  57. 57.
    Leung Y H, Djusisic A B, Liu Z T, et al. Defect photoluminescence of ZnO nanorods synthesized by chemical methods. J Phys Chem Solids, 2008, 69: 353–357CrossRefGoogle Scholar
  58. 58.
    Hu Y, Chen Y Q, Wu Y C, et al. Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios. Appl Surf Sci, 2009, 255: 9279–9284CrossRefGoogle Scholar
  59. 59.
    Moreira N H, Aradi B, Rosa da A L, et al. Native defects in ZnO nanowires: Atomic relaxations, relative stability, and defect, healing with organic acids. J Phys Chem C, 2010, 114: 18860–18865CrossRefGoogle Scholar
  60. 60.
    Lima S A M, Sigoli F A, Jafelicci J M, et al. Luminescent properties and lattice defects correlation on zinc oxide. Int J Inorg Mater, 2001, 3: 749–754CrossRefGoogle Scholar
  61. 61.
    Janotti A, Van de Walle C G. New insights into the role of native point defects in ZnO. J Cryst Growth, 2006, 287: 58–65CrossRefGoogle Scholar
  62. 62.
    Lukas S M, Judith L, Mac M D. ZnO-nanostructures, defects, and devices. Mater today, 2007, 10(5): 40–48CrossRefGoogle Scholar
  63. 63.
    Korsunska N O, Borkovska L V, Bulakh B M, et al. The influence of defects drift in external electric field on green luminescence of ZnO single crystals. J Lumi, 2003, 102–103: 733–736CrossRefGoogle Scholar
  64. 64.
    Meng A L, Qiu Y Y, Zhang L N, et al. Sunlight responsive photocatalysts: AgBr/ZnO hybrid nanomaterial. Sci China Chem, 2012, 55(10): 2128–2133CrossRefGoogle Scholar
  65. 65.
    Yang T B, Qin D H, Cao Y, et al. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 55(5): 755–759CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • AiLing Yang
    • 1
  • Yun Yang
    • 1
  • ZhenZhen Zhang
    • 1
  • XiChang Bao
    • 2
  • RenQiang Yang
    • 2
  • ShunPin Li
    • 1
  • Liang Sun
    • 2
  1. 1.Department of PhysicsOcean University of ChinaQingdaoChina
  2. 2.Qingdao Institute of Bioenergy & Bioprocess TechnologyChinese Academy of SciencesQingdaoChina

Personalised recommendations