Science China Technological Sciences

, Volume 56, Issue 1, pp 20–24 | Cite as

Interfacial assembly of a series of Cu(II)-coordinated Schiff bases complexes: orderly nanostructures and supramolecular chirality

  • TiFeng Jiao
  • XuHui Li
  • QingRui Zhang
  • QiuRong Li
  • JingXin Zhou
  • FaMing Gao
Article

Abstract

Four achiral Cu(II)-coordinated Schiff bases complexes containing aromatic structures were synthesized and their supramolecular assemblies at the air/water interface were investigated. All the compounds could be spread on water surface although they have no alkyl chains. The Schiff base complex molecules with naphthyl groups tended to form J-aggregate in the Langmuir-Blodgett (LB) films transferred from water surface. By investigation of atomic force microscopy, a multilayer film or three-dimensional structures were observed. It was interesting to note that the LB films of achiral compound Cu-NA with naphthyl segment and without methyl groups transferred from water surface showed chirality. The supramolecular chirality in the present LB films was suggested to be due to a cooperative stereoregular π-π stacking of the functional groups in a helical sense. This research work provides a helpful clue for regulating the nanostructures and supramolecular chiral assembly in organized films.

keyowrds

interfacial assembly Langmuir-Blodgett film supramolecular chirality Schiff base 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ulman A. An Introduction to Ultra Thin Organic Films from Langmuir-Blodgett to Self-assembly. San Diego: Academic Press, 1991Google Scholar
  2. 2.
    Roberts G. Langmuir-Blodgett Films. New York: Plenum Press, 1990Google Scholar
  3. 3.
    Sun T L, Wu Z L, Gong J P. Self-assembled structures of a semi-rigid polyanion in aqueous solutions and hydrogels. Sci China Chem, 2012, 55(5): 735–742CrossRefGoogle Scholar
  4. 4.
    Qin A J, Zhang Y, Tang B Z. et al. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. Sci China Chem, 2012, 55(5): 772–778CrossRefGoogle Scholar
  5. 5.
    Xu J, Zheng S T, Yang G Y. A series of 3d-4f heterometallic frameworks comprising 2D lanthanide-organic layers and diverse Cucomplex pillars. Sci China Chem, 2011, 54(9): 1407–1417CrossRefGoogle Scholar
  6. 6.
    Zana R. Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interf Sci, 2002, 248: 203–220CrossRefGoogle Scholar
  7. 7.
    Bell P C, Bergsma M, Dolbnya I P, et al. Transfection mediated by gemini surfactants: engineered escape from the endosomal compartment. J Am Chem Soc, 2003, 125: 1551–1558CrossRefGoogle Scholar
  8. 8.
    Escamilla G H, Newkome G R. Bolaamphiphiles: from golf balls to fibers. Angew Chem Int Ed Engl, 1994, 33: 1937–1940CrossRefGoogle Scholar
  9. 9.
    Fuhrhop J H, Wang T. Bolaamphiphiles. Chem Rev, 2004, 104: 2901–2938CrossRefGoogle Scholar
  10. 10.
    Jiao T, Zhou J, Zhang L, et al. Supramolecular assembly and headgroup effect in interfacial organized films (I): A study of some bolaamphiphiles. J Disper Sci Technol, 2011, 32: 1592–1598CrossRefGoogle Scholar
  11. 11.
    Weissbuch I, Baxter P N W, Cohen S, et al. Self-assembly at the air-water interface: in-situ preparation of thin films of metal ion grid architectures. J Am Chem Soc, 1998, 120: 4850–4860CrossRefGoogle Scholar
  12. 12.
    Cai J, Liu M, Dong C, et al. Monolayer formation and Langmuir-Blodgett films of benzimidazole derivatives without alkyl chain. Colloids Surf A: Physicochem Eng Asp, 2000, 175: 165–170CrossRefGoogle Scholar
  13. 13.
    Jiao T, Liu M. Phase behaviors and 2D–3D morphological transition of aromatic Schiff base derivatives in organized molecular films. Acta Phys Chim Sin, 2012, 28: 1418–1424Google Scholar
  14. 14.
    Yu Z, Lu K, Wei Z X. Self-assembly of conjugated polymers for anisotropic nanostructures. Sci China Chem, 2012, 55(11): 2270–2274CrossRefGoogle Scholar
  15. 15.
    Xiong Y S, Tang Z Y. Role of self-assembly in construction of inorganic nanostructural materials. Sci China Chem, 2012, 55(11): 2275–2279CrossRefGoogle Scholar
  16. 16.
    Qian H F, Liu C, Jin R C. Controlled growth of molecularly pure Au25(SR)18 and Au38 (SR)24 nanoclusters from the same polydispersed crude product. Sci China Chem, 2012, 55(11): 2310–2314CrossRefGoogle Scholar
  17. 17.
    Selinger J V, Wang Z G, Bruinsma R F, et al. Chiral symmetry breaking in Langmuir monolayers and smectic films. Phys Rev Lett, 70, 1993, 1139–1142CrossRefGoogle Scholar
  18. 18.
    Zhai X, Zhang L, Liu M. Supramolecular assemblies between a new series of gemini-type amphiphiles and TPPS at the air/water interface: aggregation, chirality, and spacer effect. J Phys Chem B, 2004, 108: 7180–7185CrossRefGoogle Scholar
  19. 19.
    Zhang G, Liu M. Interfacial assemblies of Cyanine dyes and gemini amphiphiles with rigid spacers: regulation and interconversion of the aggregates. J Phys Chem B, 2008, 112: 7430–7437CrossRefGoogle Scholar
  20. 20.
    Jiao T, Zhang G, Liu M. Design and interfacial assembly of a new series of gemini amphiphiles with hydrophilic poly(ethyleneamine) spacers. J Phys Chem B, 2007, 111: 3090–3097CrossRefGoogle Scholar
  21. 21.
    Yuan J, Liu M. Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination. J Am Chem Soc, 2003, 125: 5051–5056CrossRefGoogle Scholar
  22. 22.
    Guo P, Liu M. Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization. Langmuir, 2005, 21: 3410–3412CrossRefGoogle Scholar
  23. 23.
    Guo Z, Jiao T, Liu M. Effect of substituent position in coumarin derivatives on the interfacial assembly: reversible photodimerization and supramolecular Chirality. Langmuir, 2007, 23: 1824–1829CrossRefGoogle Scholar
  24. 24.
    Jiao T, Liu M. Supramolecular assemblies and molecular recognition of amphiphilic Schiff bases with barbituric acid in organized molecular films. J Phys Chem B, 2005, 109: 2532–2539CrossRefGoogle Scholar
  25. 25.
    Jiao T, Liu M. Supramolecular nano-architectures and two-dimensional/ three-dimensional aggregation of a bolaamphiphilic diacid at the air/water interface. Thin Solid Films, 2005, 479: 269–276CrossRefGoogle Scholar
  26. 26.
    Chichak K, Jacquemard U, Branda N R. The construction of (salophen) ruthenium(II) assemblies using axial coordination. Eur J Inorg Chem, 2002, 2: 357–368.CrossRefGoogle Scholar
  27. 27.
    Jiao T, Liu M. Substitution controlled molecular orientation and nanostructure in the Langmuir-Blodgett films of a series of amphiphilic naphthylidene-containing Schiff base derivatives. J Colloid Interf Sci, 2006, 299: 815–822CrossRefGoogle Scholar
  28. 28.
    Spitz C, Daehne S, Ouart A, et al. Proof of chirality of J-aggregates spontaneously and enantioselectively generated from achiral dyes. J Phys Chem B, 2000, 104: 8664–8669CrossRefGoogle Scholar
  29. 29.
    Zhang G, Zhai X, Liu M. Spacer-controlled aggregation and surface morphology of a Selenacarbocyanine dye on gemini monolayers. J Phys Chem B, 2006, 110: 10455–10460CrossRefGoogle Scholar
  30. 30.
    Kasha M. Spectroscopy of the Excited State. New York: Plenum Press, 1976Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • TiFeng Jiao
    • 1
    • 2
  • XuHui Li
    • 1
  • QingRui Zhang
    • 1
  • QiuRong Li
    • 1
  • JingXin Zhou
    • 1
  • FaMing Gao
    • 1
  1. 1.Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations