Science China Technological Sciences

, Volume 56, Issue 1, pp 36–39 | Cite as

Surface and internal magnetic domain structures of Fe-Ga alloy rods

Article

Abstract

The magnetic domain structures of the 〈100〉 oriented Fe81Ga19 polycrystalline alloys with rapid quenching (RQ) and post-annealing (PA) thermal treatments are investigated by using magnetic force microscopy (MFM). The surfaces of the RQ alloy rods take on the dendritic domains after undergoing a standard mechanical polishing. While after PA processing, the distinct domain structures are observed at different temperatures. The wide stripe-like domain patterns appear in the surface of those PA rods at 550°C while the ramous domains remain at 400°C annealing. X-ray diffraction patterns indicate that a thin iron layer is formed on the surface of the specimens annealed at higher temperature. The soft magnetic iron layer, actually acting as a shield for the stray fields emerging from the internal magnetic structures underneath, brings about the presentation of the wide internal domains.

Keywords

Galfenol polycrystal magnetic force microscopy magnetic domains thermal treatment magnetostriction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engdahl G. Handbook of Giant Magnetostrictive Materials. San Diego: Academic Press, 2000Google Scholar
  2. 2.
    Clark A E, Wun-Fogle M, Restorff J B, et al. Corrosion studies of single crystals of iron-gallium alloys in aqueous environments. Corrosion Sci, 2007, 49(10): 4015–4027CrossRefGoogle Scholar
  3. 3.
    Kellogg R A. Development and modeling of iron-gallium alloys. Doctoral Dissertation, Ames: Iowa State University, 2003Google Scholar
  4. 4.
    Wuttig M, Dai L, Cullen J. Elasticity and magnetoelasticity of Fe-Ga solid solutions. Appl Phys Lett, 2002, 80(7): 1135–1137CrossRefGoogle Scholar
  5. 5.
    Khachaturyan A G, Viehland D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys. Metall Mater Trans A, 2007, 38A(13): 2308–2328CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya S, Jinschek J R, Khachaturyan A, et al. Nanodispersed DO3-phase nanostructures observed in magnetostrictive Fe19Ga81 Galfenol alloys. Phys Rev B, 2008, 77(10): 104107-1–104107-6.CrossRefGoogle Scholar
  7. 7.
    Cao H, Gehring P M, Devreugd C P, et al. Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated Galfenol (Fe1−xGax) alloys. Phys Rev Lett, 2009, 102(12): 127201-1–127201-4.CrossRefGoogle Scholar
  8. 8.
    Xing Q, Lograsso T A. Magnetic domains in magnetostrictive Fe-Ga alloys. Appl Phys Lett, 2008, 93(18): 182501-1–182501-3CrossRefGoogle Scholar
  9. 9.
    Xing Q, Du Y, McQueeney R J, Lograsso T A. Structural investigations of Fe-Ga alloys Phase relations and magnetostrictive behavior. Acta Mater, 2008, 56(16): 4536CrossRefGoogle Scholar
  10. 10.
    Bai F, Li J, Viehland D, et al. Magnetic force microscopy investigation of domain structures in FeGa single crystals. J Appl Phys, 2005, 98(2): 023904-1–023904-4CrossRefGoogle Scholar
  11. 11.
    Song H Z, Li Y X, Zhao K Y, et al. Influence of stress on the magnetic domain structure in Fe81Ga19 alloys. J Appl Phys, 2009, 105(1): 013913-1–013913-4CrossRefGoogle Scholar
  12. 12.
    Zhou J K, Li D D, Li J G. Magnetic force microscopy observation of undercooled Fe81Ga19 magnetostrictive alloys. J Phys D: Appl Phys, 2008, 41(20): 205405CrossRefGoogle Scholar
  13. 13.
    Mudivarthi C, Na S M, Schaefer R, et al. Magnetic domain observations in Fe-Ga alloys. J Magn Magn Mater, 2010, 322(14): 2023–2026CrossRefGoogle Scholar
  14. 14.
    Bai F, Zhang H, Li J, et al. Magnetic force microscopy investigation of the static magnetic domain structure and domain rotation in Fe-x at.% Ga alloys. Appl Phys Lett, 2009, 95(15): 152511-1–152511-3CrossRefGoogle Scholar
  15. 15.
    Lograsso T A, Ross A R, Schlagel D L, et al. Structural transformations in quenched Fe-Ga alloys. J Alloys Compd, 2003, 350(1–2): 95–101CrossRefGoogle Scholar
  16. 16.
    Zhang S G. One-step process and apparatus for fabricating rare-earth giant magnetostrictive materials and corresponding products. China Patent 03156926.9, 2003Google Scholar
  17. 17.
    Bodenberger R, Hubert A. Zur bestimmung der blochwandenergie von einachsigen ferromagneten. Phys Stat Sol A, 1977, 44(1): K7–K11CrossRefGoogle Scholar
  18. 18.
    Hubert A, Schäfer R. Magnetic Domains: The Analysis of Magnetic Microstructures. New York: Springer, 1998Google Scholar
  19. 19.
    Gao Y H, Han B S, Zhu J H, et al. Domain structure in Fe-implanted Nd2Fe14B magnets. Appl Phys Lett, 1999, 74(12): 1749–1751CrossRefGoogle Scholar
  20. 20.
    Fang Y K, Zheng D, Li W, et al. Surface and interior magnetic domain structures of 〈110〉 oriented Tb-Dy-Fe alloy rods. IEEE Trans Magn, 2007, 43(5): 1871–1874CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Physics and Electronic ScienceHunan University of Science and TechnologyXiangtanChina
  2. 2.National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Grirem Advanced Materials Co., LtdGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations