Skip to main content
Log in

Investigation of GaN-based light-emitting diodes using a p-GaN/i-InGaN short-period superlattice structure as last quantum barrier

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this work, GaN-based light-emitting diodes (LEDs) with a p-GaN/i-InGaN short-period superlattice (SPSL) structure, p-GaN and undoped GaN last quantum barrier (LQB) have been numerically investigated by using the APSYS simulation software. It has been found that the efficiency droop is significantly improved when the undoped GaN LQB in a typical blue LED is replaced by a p-GaN/i-InGaN SPSL structure. According to the simulation analysis, using the p-GaN/i-InGaN SPSL structure as LQB is beneficial to increasing the hole injection efficiency and decreasing the electron current leakage. Therefore, the radiative recombination and optical power are enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang J X, Wang L, Zhao W, et al. Study on internal quantum efficiency of blue InGaN multiple-quantum-well with an InGaN underneath layer. Sci China Tech Sci, 2010, 53: 306–308

    Article  Google Scholar 

  2. Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91: 183507

    Article  Google Scholar 

  3. Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/ AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett, 2008, 93: 041102

    Article  Google Scholar 

  4. Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett, 2007, 91: 141101

    Article  Google Scholar 

  5. Kim A Y, Götz W, Steigerwald D A, et al. Performance of high-power AlInGaN light emitting diodes. Phys Status Solidi (a), 2001, 188(1): 15–21

    Article  Google Scholar 

  6. Chen Y X, Shen G D, Guo W L, et al. Internal quantum efficiency drop induced by the heat generation inside of light emitting diodes (LEDs). Chinese Phys B, 2011, 20(1): 017204

    Article  Google Scholar 

  7. Rozhansky I V, Zakheim D A. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. Phys Status Solidi (a), 2007, 204(1): 227–230

    Article  Google Scholar 

  8. David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett, 2008, 92: 053502

    Article  Google Scholar 

  9. Schubert M F, Chhajed S, Kim J K, et al. Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl Phys Lett, 2007, 91: 231114

    Article  Google Scholar 

  10. Pei X J, Guo L W, Wang X H, et al. Enhanced photoluminescence of InGaN/GaN green light-emitting diodes grown on patterned sapphire substrate. Chinese Phys Lett, 2009, 26(2): 028101

    Article  Google Scholar 

  11. Chen J R, Lu T C, Kuo H C, et al. Study of InGaN-GaN light-emitting diodes with different last barrier thicknesses. IEEE Photon Technol Lett, 2010, 22(12): 860–862

    Article  Google Scholar 

  12. Yen S H, Tsai M L, Tsai M C, et al. Investigation of optical performance of InGaN MQW LED with thin last barrier. IEEE Photon Technol Lett, 2010, 22(24): 1787–1789

    Article  Google Scholar 

  13. Kuo Y K, Tsai M C, Yen S H, et al. Effect of P-type last barrier on efficiency droop of blue InGaN light-emitting diodes. IEEE J Quantum Electron, 2010, 46(8): 1214–1220

    Article  Google Scholar 

  14. Kumakura K, Makimoto T, Kobayashi N. Efficient hole generation above 1019 cm−3 in Mg-doped InGaN/GaN superlattices at room temperature. Jpn J Appl Phys, 2000, 39: L195–L196

    Article  Google Scholar 

  15. Sheu J K, Chi G C, Jou M J. Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer. IEEE Electron Device Lett, 2001, 22(10): 460–462

    Article  Google Scholar 

  16. Jang J S, Kim D, Seong T Y. Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice. IEEE Photon Technol Lett, 2006, 18(14): 1536–1538

    Article  Google Scholar 

  17. Jang J S. High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice. Appl Phys Lett, 2008, 93: 081118

    Article  Google Scholar 

  18. Liu J P, Limb J B, Ryou J H, et al. Characteristics of green light-emitting diodes using an InGaN:Mg/GaN:Mg superlattice as p-type hole injection and contact layers. Electron Mater, 2007, 37(5): 558–563

    Article  Google Scholar 

  19. APSYS by Crosslight Software Inc., Burnaby, Canada (http://www.crosslight.com)

  20. Chuang S L, Chang C S. k·p method for strained wurtzite semiconductors. Phys Rev B, 1996, 54(4): 2491–2504

    Article  Google Scholar 

  21. Chuang S L, Chang C S. A band-structure model of strained quantum-well wurtzite semiconductors. Semicond Sci Technol, 1997, 12(3): 252–263

    Article  Google Scholar 

  22. Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89(11): 5815–5875

    Article  Google Scholar 

  23. Matsuoka T, Okamoto H, Nakao M, et al. Optical bandgap energy of wurtzite InN. Appl Phys Lett, 2002, 81(7): 1246–1248

    Article  Google Scholar 

  24. Piprek J, Nakamura S. Physics of high-power InGaN/GaN lasers. IEE Proc Optoelectron, 2002, 149(4): 145–151

    Article  Google Scholar 

  25. Su Y K, Wang H C, Lin C L, et al. AlGaInP light emitting diode with a modulation-doped superlattice. Jpn J Appl Phys, 2003, 42(2): L751–L753

    Article  Google Scholar 

  26. Chen N C, Lin C M, Yang Y K, et al. Measurement of junction temperature in a nitride light-emitting diode. Jpn J Appl Phys, 2008, 47: 8779–8782

    Article  MathSciNet  Google Scholar 

  27. Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors. J Appl Phys, 2003, 94(6): 3675–3696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangHan Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Fan, G., Zheng, S. et al. Investigation of GaN-based light-emitting diodes using a p-GaN/i-InGaN short-period superlattice structure as last quantum barrier. Sci. China Technol. Sci. 56, 98–102 (2013). https://doi.org/10.1007/s11431-012-5052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5052-x

Keywords

Navigation