Skip to main content
Log in

Effects of alkaline earth oxides on precipitation behavior of metallic iron under CO atmosphere

  • Progress of Projects Supported by NSFC
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In gaseous reduction of iron ore fines, alkaline earth oxides have profound effects on the precipitation behavior of fresh metallic iron on the particle surface. In this work, in situ observation was performed to reveal the influence of alkaline earth oxides on the precipitation morphology and micro-structure variation of fresh metallic iron from microscopic level by simulation of the gas-solid reaction condition on the surface of ore particles. Experimental results indicate that doping MgO in the particle surface can inhibit the reduction of iron oxide and however doping CaO, SrO and BaO promote; all alkaline earth oxides tested in this study can change the precipitation morphology of fresh metallic iron; minimum doping mole fraction of one oxide to inhibit iron whiskers growth (N AO) is related to its cation radius \(\left( {r_{A^{2 + } } } \right)\) and its extranuclear electronic layers \(\left( {n_{A^{2 + } } } \right)\), which can be expressed as \(N_{AO} = 1.3 \times 10^{ - 5} r_{A^{2 + } }^2 \sqrt {n_{A^{2 + } } }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Institute of Chemical Metallurgy of Chinese Academy of Sciences, Institute of Scientific and Technical Information of China. Gas ironmaking in fluidized bed. Beijing: Science and Technology Document Press, 1977

  2. Komatina M, Gudenau H W. The sticking problem during direct reduction of fine iron ore in the fluidized bed. Metalurgija, 2004, 10(4): 309–328

    Google Scholar 

  3. Fang J, Chu M S. Reduction in a mixed fluidized bed with iron ore and coal. J Northeast Univ (Natural Sci), 2000, 21(1): 80–83

    Google Scholar 

  4. Fang J. Sticking problem in fluidized bed iron ore reduction. Iron Steel, 1991, 26(5): 11–14

    Google Scholar 

  5. Qi Y H, Xu H C. Separating morphology of iron and sticking behavior of iron ore in reducing fluidized bed. J Iron Steel Res, 1996, 8(5): 7–10

    Google Scholar 

  6. Zhong Y W, Gong X Z, Wang Z, et al. Effect of iron surfaces with nano/micro structures on the sticking of Fe2O3 in fluidized bed reduction. J Univ Sci Technol B, 2011, 33(4): 406–412

    Google Scholar 

  7. Degel R. Eisenerzreduktion in der wirbelschiht mit wasserstoffreichem gas: Sticking und ansätze. Dissertation for Doctoral Degree. Germany: RWTH Aachen, 1996

    Google Scholar 

  8. Schiller M. Mikromorphologie der eisenphase als folge der reduktion von eisenoxiden. Dissertation for Doctoral Degree. Germany: RWTH Aachen, 1987

    Google Scholar 

  9. Zhao Z L, Tang H Q, Guo Z C, et al. In situ observation of growth of iron whiskers under CO atmosphere. J Chin Rare Earth Soc, 2010, 28 (Suppl1): 354–358

    Google Scholar 

  10. Iguchi Y, Inouye M. On the rate of the reduction of wustite, magnetite, and hematite containing Al2O3, CaO, and MgO. J Iron Steel Inst Jpn, 1979, 65(12): 1692–1701

    Google Scholar 

  11. Hayashi S, Iguchi Y. Factors affecting the sticking of fine iron ores during fluidized bed reduction. ISIJ Int, 1992, 32(9): 962–971

    Article  Google Scholar 

  12. Bonalde A, Henriquez A, Manrique M. Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent. ISIJ Int, 2005, 45(9): 1255–1260

    Article  Google Scholar 

  13. Abdel Halim K S, Bahgat M, El-Kelesh H A, et al. Metallic iron whisker formation and growth during iron oxide reduction: Basicity effect. Ironmak Steelmak, 2009, 36(8): 631–641

    Article  Google Scholar 

  14. Dwarapudi S, Ghosh T K, Shankar A, et al. Effect of pyroxenite flux on the quality and microstructure of hematite pellets. Int J Miner Proces, 2010, 96(1–4): 45–53

    Article  Google Scholar 

  15. El-Geassy A A. Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173–1473 K. ISIJ Int, 1997, 37(9): 844–853

    Article  Google Scholar 

  16. Liu J H, Zhang J Y, Zhou T P. Influence of foreign oxides on reduction kinetics of iron oxides. J Iron Steel Res, 2000, 12(14): 55–58

    Google Scholar 

  17. Schenck H, Pfaff W. The system FeO-MgO and distribution equilibria with liquid iron from 1520°C to 1750°C. Germany: Archiv fuer das eisenhuettenwesen, 1961, 32(11): 741–75

    Google Scholar 

  18. Fukuyama H, Hossain K, Nagata K. Solid-state reaction kinetics of the system CaO-FeO. Metall Mater Trans B, 2002, 33(2): 257–264

    Article  Google Scholar 

  19. Fossdal A, Einarsrud M A, Grande T. Phase equilibria in the pseudo-binary system SrO-Fe2O3. J Solid State Chem, 2004, 177(8): 2933–2942

    Article  Google Scholar 

  20. Goto Y, Takada T. Phase diagram of the system BaO-Fe2O3. J Am Ceram Soc, 1960, 43(3): 150–153

    Article  Google Scholar 

  21. Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Cryst, 1976, A32: 751–767

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiQing Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Tang, H., Zhang, B. et al. Effects of alkaline earth oxides on precipitation behavior of metallic iron under CO atmosphere. Sci. China Technol. Sci. 55, 3029–3035 (2012). https://doi.org/10.1007/s11431-012-5003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5003-6

Keywords

Navigation