Skip to main content
Log in

Energy conserving and decaying algorithms for corotational finite element nonlinear dynamic responses of thin shells

  • Progress of Projects Supported by NSFC
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

On the basis of the finite element corotational formulation for geometric nonlinear static analysis of thin shells with large rotation and small strain established before and from the generalized-α time integration algorithm, the energy conserving and decaying algorithms for corotational formulation nonlinear dynamic response analysis of thin shells are established in this paper. Responses are solved by means of a predictor-corrector procedure. In the case of ignoring the structural damping, the conserving or decaying total energy of structure and the controllable numerical damping for high frequency responses can ensure the numerical stability of the algorithm. The inertial parts are linearly interpolated directly in the fixed global coordinate system by using the element nodal displacement in the global coordinate system for obtaining the constant mass matrix, while the elastic parts adopt the corotational formulation. Hence, the whole formulation obtained in this paper is element independent. Through three typical numerical examples, the performances of the algorithm in this paper were compared with those of the classical Newmak and HHT-α algorithms to indicate that the algorithm in this paper could accurately solve nonlinear dynamic responses of thin shells with large displacements and large rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wempner G. Finite elements, finite rotations and small strains of flexible shells. Int J Solids Struc, 1969, 5: 117–153

    Article  MATH  Google Scholar 

  2. Belytschko T, Schwer L. Large displacement transient analysis of space frames. Int J Numer Methods Engrg, 1977, 11: 65–84

    Article  MATH  Google Scholar 

  3. Rankin C C, Brogan F A. An element independent corotational procedure for the treatment of large rotations. J Press Vess Tech, 1986, 108: 165–174

    Article  Google Scholar 

  4. Rankin C C, Nour-Omid B. The use of projectors to improve finite element performance. Comput Struct, 1988, 30: 257–267

    Article  MATH  Google Scholar 

  5. Nour-Omid B, Rankin C C. Finite rotation analysis and consistent linearization using projectors. Comput Method Appl Mech Eng, 1991, 93: 353–384

    Article  MATH  Google Scholar 

  6. Crisfield M A, Moita G F. A unified co-rotational for solids, shells and beams. Int J Solids Struc, 1996, 33: 2969–2992

    Article  MATH  Google Scholar 

  7. Crisfield M A. Nonlinear Finite Element Analysis of Solids and Structures. Chichester: John Wiley & Sons Ltd., 1997

    Google Scholar 

  8. Haugen B. Buckling and stability problems for thin shell structures using high-performance finite elements. Dissertation of Doctoral Degree. Boulder, CO: University of Colorado, 1994

    Google Scholar 

  9. Felippa C A, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory. Comput Method Appl Mech Eng, 2005, 194: 2285–2335

    Article  MATH  Google Scholar 

  10. Pacoste C. Co-rotational flat facet triangular elements for shell instability analysis. Comput Method Appl Mech Eng, 1998, 156: 75–110

    Article  MATH  Google Scholar 

  11. Battini J M, Pacoste C. On the choice of local element frame for corotational triangular shell elements. Commun Numer Method Eng, 2004, 20: 819–825

    Article  MATH  Google Scholar 

  12. Battini J M, Pacoste C. On the choice of the linear element for corotational triangular shells. Comput Method Appl Mech Eng, 2006, 195: 6362–6377

    Article  MATH  Google Scholar 

  13. Battini J-M. A modified corotational framework for triangular shell elements. Comput Method Appl Mech Eng, 2007, 196: 1905–1914

    Article  MATH  Google Scholar 

  14. Yang J S, Xia P Q. Finite element corotational formulation for geometric nonlinear analysis of thin shells with large rotation and small strain. Sci China Tech Sci, 2012, 55: 3142–3152

    Article  Google Scholar 

  15. Hsiao K M, Jang J Y. Dynamic analysis of planar flexible mechanisms by co-rotational formulation. Comput Method Appl Mech Eng, 1991, 87: 1–14

    Article  MATH  Google Scholar 

  16. Hsiao K M, Lin J Y, Lin W Y. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput Method Appl Mech Eng, 1999, 169: 1–18

    Article  MATH  Google Scholar 

  17. Crisfield M A, Galvanetto U, Jelenic G. Dynamics of 3-D co-rotational beams. Comput Mech, 1997, 20: 507–519

    Article  MATH  Google Scholar 

  18. Le T N, Battini J M, Hjiaj M. Efficient formulation for dynamics of corotational 2D beams. Comput Mech, 2011, 48: 153–161

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhong H G, Crisfield M A. An energy-conserving co-rotational procedure for the dynamics of shell structures. Eng Comput, 1998, 15: 552–576

    Article  MATH  Google Scholar 

  20. An X M, Xu M. An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity (in Chinese). Chin J Theoret Appl Mech, 2011, 43: 97–104

    MathSciNet  Google Scholar 

  21. Almeida F S, Awruch A M. Corotational nonlinear dynamic analysis of laminated composite shells. Finite Element Analys Design, 2011, 47: 1131–1145

    Article  MathSciNet  Google Scholar 

  22. Newmark N M. A method of computation for structural dynamics. J Eng Mech Div, ASME, 1959, 85: 67–94

    Google Scholar 

  23. Hilber H M, Hughes T J R, Taylor R L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dynam, 1977, 5: 283–292

    Article  Google Scholar 

  24. Chung J, Hulbert G M. A time integration algorithm for structural dynamics with improved numerical dissipation the generalized-α method. J Appl Mech, ASME, 1993, 60: 371–375

    Article  MathSciNet  MATH  Google Scholar 

  25. Simo J C, Tarnow N. The discrete energy-momentum method Conserving algorithms for nonlinear elastodynamics. Angew Math Phys, 1992, 43: 757–792

    Article  MathSciNet  MATH  Google Scholar 

  26. Simo J C, Tarnow N. A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int J Num Meth Engng, 1994, 37: 2527–2549

    Article  MathSciNet  MATH  Google Scholar 

  27. Crisfield M A, Jelenic G. Some aspects of the non-linear finite element method. Finite Element Analys Design, 1997, 27: 19–40

    Article  MATH  Google Scholar 

  28. Haug E, Nguyen O S, de Rouvray A L. An improved energy-conserving implicit time integration algorithm for nonlinear dynamic structural analysis. In: Proc 4th Int Conf Struct Mech in Reactor Tech. San Francisco, CA, 1977

  29. Hughes T J R, Liu W K, Caughy P. Transient finite element formulations that preserve energy. J Appl Mech, 1978, 45: 366–370

    Article  MATH  Google Scholar 

  30. Kuhl D, Ramm E. Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells. Comput Method Appl Mech Eng, 1996, 136: 293–315

    Article  MATH  Google Scholar 

  31. Kuhl D, Ramm E. Generalized energy-momentum method for non-linear adaptive shell dynamics. Comput Method Appl Mech Eng, 1999, 178: 343–366

    Article  MathSciNet  MATH  Google Scholar 

  32. Felippa C A. A study of optimal membrane triangles with drilling freedoms. Comput Method Appl Mech Eng, 2003, 192: 2125–2168

    Article  MATH  Google Scholar 

  33. Batoz J L, Bathe K J, Ho L W. A study of three-node triangular plate bending elements. Int J Num Method Eng, 1980, 15: 1771–1812

    Article  MATH  Google Scholar 

  34. Armero F, Petocz E. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comp Method Appl Mech Eng, 1998, 158: 269–300

    Article  MathSciNet  MATH  Google Scholar 

  35. Bottasso C L, Bauchau O A, Choi J Y. An energy decaying algorithm for nonlinear dynamics of shells. Comput Method Appl Mech Eng, 2002, 191: 3099–3121

    Article  MathSciNet  MATH  Google Scholar 

  36. Balah M, Al-Ghamedy. Energy-Momentum Conserving Algorithm for Nonlinear Dynamics of Laminated Shells Based on a Third-Order Shear Deformation Theory. J Eng Mech, 2005, 131: 12–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PinQi Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Xia, P. Energy conserving and decaying algorithms for corotational finite element nonlinear dynamic responses of thin shells. Sci. China Technol. Sci. 55, 3311–3321 (2012). https://doi.org/10.1007/s11431-012-5002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5002-7

Keywords

Navigation