Skip to main content
Log in

Electrocatalytic evolution of oxygen on NiCu particles modifying conductive alumina/nano-carbon network composite electrode

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, a novel electrically conductive alumina/nano-carbon network (NCN) composite material was used as an electrocatalyst carrier. A NiCu/Al2O3/NCN composite electrode was prepared by electrodepositing NiCu particles onto the surface of the conductive alumina/NCN composite. Morphology, composition, crystalline structure and electrochemical properties of the NiCu/Al2O3/NCN composite electrode were investigated. The results showed that NiCu particles can be deposited onto the surface of the alumina/NCN composite by a coelectrodeposition method. NiCu particles in the form of solid solution with face-centered cubic (fcc) structure were relatively uniformly distributed over the carbon layer of the conductive ceramic between alumina grains. As-resulted NiCu/Al2O3/NCN composite electrode had a remarkably enhanced electrochemical activity and high stabilization for oxygen evolution reaction, which indicated its potential application with enhanced performance to oxygen evolution reaction (OER). Moreover, based on the electrochemical measurement, the mechanism of the OER on the NiCu/Al2O3/NCN composite electrode was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chi B, Li J, Yang X, et al. Deposition of Ni-Co by cyclic voltammetry method and its electrocatalytic properties for oxygen evolution reaction. Int J Hydrogen Energ, 2005, 30: 29–34

    Article  Google Scholar 

  2. Restovic A, Poillerat G, Chartier P, et al. Oxygen evolution reaction on copper manganites-effect of preparation method and electrode manufacturing on superficial sites density. Electrochim Acta, 1994, 39: 1579–1584

    Article  Google Scholar 

  3. Wu Y N, Liao S J, Wang K, et al. High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications. Sci China Tech Sci, 2010, 53: 264–271

    Article  Google Scholar 

  4. Ye Z, Meng H, Sun D. Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2+MnO2 electrodes in 0.5 m H2SO4 solution. J Electroanal Chem, 2008, 621: 49–54

    Article  Google Scholar 

  5. Kubisztal J, Budniok A. Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media. Int J Hydrogen Energ, 2008, 33: 4488–4494

    Article  Google Scholar 

  6. Mohammad A M, Awad M I, El-Deab M S, et al. Electrocatalysis by nanoparticles: Optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta, 2008, 53: 4351–4358

    Article  Google Scholar 

  7. Li W S, Chen H Y, Long X M, et al. Oxygen evolution reaction on lead-bismuth alloys in sulfuric acid solution. J Power Sources, 2006, 158: 902–907

    Article  Google Scholar 

  8. Matsumoto Y, Sato E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys, 1986, 14: 397–426

    Article  Google Scholar 

  9. Fazle Kibria A K M, Tarafdar S A. Electrochemical studies of a nickel-copper electrode for the oxygen evolution reaction (OER). Int J Hydrogen Energ, 2002, 27: 879–884

    Article  Google Scholar 

  10. Nikolov I, Darkoui R, Zhecheva E, et al. Electrocatalytic activity of spinel related cobalties MxCo3−x O4 (M = Li, Ni, Cu) in the oxygen evolution reaction. J Electroanal Chem, 1997, 429: 157–168

    Article  Google Scholar 

  11. Kibria M F, Mridha M S H. Electrochemical studies of the nickel electrode for the oxygen evolution reaction. Int J Hydrogen Energ, 1996, 21: 179–182

    Article  Google Scholar 

  12. Pham M T, Maitz M F, Richter E, et al. Electrochemical behaviour of nickel surface-alloyed with copper and titanium. J Electroanal Chem, 2004, 572: 185–193

    Article  Google Scholar 

  13. Chen G Y, Bare S R, Mallouk T E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J Electrochem Soc, 2002, 149: A1092–A1099

    Article  Google Scholar 

  14. Ma L, Sui S, Zhai Y. Preparation and characterization of Ir/TiC catalyst for oxygen evolution. J Power Sources, 2008, 177: 470–477

    Article  Google Scholar 

  15. Bursell M, Pirjamali M, Kiros Y. La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes. Electrochim Acta, 2002, 47: 1651–1660

    Article  Google Scholar 

  16. Xu B S, Yang X W, Wang X M, et al. A novel catalyst support for DMFC: Onion-like fullerenes. J Power Sources, 2006, 162: 160–164

    Article  Google Scholar 

  17. Menchavez R L, Fuji M, Takahashi M. Electrically conductive dense and porous alumina with in-situ-synthesized nanoscale carbon. Adv Mater, 2008, 20: 2345–2351

    Article  Google Scholar 

  18. Menchavez R L, Fuji M, Takahashi M. Electrical conductivity of gelcast alumina sintered under inert atmosphere. J Eur Ceram Soc, 2009, 29: 949–954

    Article  Google Scholar 

  19. Hai C, Liu J, Watanabe H, et al. Surface activation of conductive porous alumina by depositing nickel particles. J Am Ceram Soc, 2009, 92: s38–s41

    Article  Google Scholar 

  20. Guha A, Lu W, Zawodzinski Jr T A, et al. Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon, 2007, 45: 1506–1517

    Article  Google Scholar 

  21. Bittencourt C, Felten A, Ghijsen J, et al. Decorating carbon nanotubes with nickel nanoparticles. Chem Phys Lett, 2007, 436: 368–372

    Article  Google Scholar 

  22. Liu J, Menchavez R L, Watanabe H, et al. Highly conductive alumina/ NCN composites electrodes fabricated by gelcasting and reduction-sintering-An electrochemical behavior study in aggressive environments. Electrochim Acta, 2008, 53: 7191–7197

    Article  Google Scholar 

  23. Liu J, Watanabe H, Fuji M, et al. Electrocatalytic evolution of hydrogen on porous alumina/gelcast-derived nano-carbon network composite electrode. Electrochem Comm, 2009, 11: 107–110

    Article  Google Scholar 

  24. Alper M, Kockar H, Safak M, et al. Comparison of Ni-Cu alloy films electrodeposited at low and high pH levels. J Alloy Compd, 2008, 453: 15–19

    Article  Google Scholar 

  25. Danaee I, Jafarian M, Forouzandeh F, et al. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energ, 2008, 33: 4367–4376

    Article  Google Scholar 

  26. Kumar K S, Haridoss P, Seshadri S K. Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation. Surf Coat Tech, 2008, 202(9): 1764–1770

    Article  Google Scholar 

  27. Yeo I H, Johnson D C. Electrochemical response of small organic molecules at nickel-copper alloy electrodes. J Electroanal Chem, 2001, 495: 110–119

    Article  Google Scholar 

  28. Casella I G, Gatta M. Electrodeposition and characterization of nickel-copper alloy films as electrode material in alkaline media. J Electrochem Soc, 2002, 149: B465–B471

    Article  Google Scholar 

  29. Druska P, Strehblow H H, Golledge S. A surface analytical examination of passive layers on Cu/Ni alloys: Part I. Alkaline solution. Corros Sci, 1996, 38: 835–51

    Article  Google Scholar 

  30. Luo P, Prabhu S V, Baldwin R P. Constant potential amperometric detection at a copper-based electrode: Electrode formation and operation. Anal Chem, 1990, 62: 752–755

    Article  Google Scholar 

  31. Le W Z, Liu Y Q. Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sensor Actuat B-Chem, 2009, 141: 147–153

    Article  Google Scholar 

  32. Heli H, Jafarian M, Mahjani M G, et al. Electro-oxidation of methanol on copper in alkaline solution. Electrochim Acta, 2004, 49: 4999–5006

    Article  Google Scholar 

  33. Sato N, Okamoto G. Reaction mechanism of anodic oxygen evolution on nickel in sulphate solutions. Electrochim Acta, 1965, 10: 495–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Fuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Fuji, M., Shirai, T. et al. Electrocatalytic evolution of oxygen on NiCu particles modifying conductive alumina/nano-carbon network composite electrode. Sci. China Technol. Sci. 55, 3388–3394 (2012). https://doi.org/10.1007/s11431-012-4992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4992-5

Keywords

Navigation