Skip to main content
Log in

High performance steels: Initiative and practice

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In order to meet the progressive requirement for the performance improvement of steel, the author proposed a novel microstructure featured with multi-phase, meta-stable and multi-scale (so-called as M3). And then, the new technologies could be developed to process three prototype steels with high performance: the third generation high strength low alloy (HSLA) steels with improved toughness and/or ductility (AKV(−40°C)⩾200 J and/or A⩾20% when Rp0.2 in 800–1000 MPa), the third generation advanced high strength steels (AHSS) (Rm×A⩾30 GPa% when Rm from 1000 MPa to 1500 MPa) for automobiles with improved ductility and low cost, and heat resistant martensitic steels with improved creep strength (σ10000650⩾90 MPa). It can be expected that the new technology developed will remarkably improve the safety and reliability of steel products in service for infrastructures, automobiles and fossil power station in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong H, Wang M Q, Weng Y Q. Performance improvement of steels trough M3 structure control. Iron Steel, 2010, 45(7): 1–7

    Google Scholar 

  2. Brenner S S. The growth of whiskers by the reduction of metal saltsLa croissance de barbes par la reduction de sels metalliques Das wachsen von “whiskers” durch reduktion von metallsalzen. Acta Metall, 1956, 4: 62–74

    Article  Google Scholar 

  3. Dong H, Sun X J, Cao W Q, et. al, On the performance improvement of steels through M3 structure control. Advanced Steels. In: Weng Y Q, Dong H, Gan Y, eds. Beijing: Metallurgical Industry Press, 2010. 35–57

    Google Scholar 

  4. Weng Y Q. Ultra-fine Grained Steels. Beijing: Metallurgical Industry Press, 2008

    Google Scholar 

  5. Dong H, Sun S J, Hui W J, et al. Grain refinement in steels and the applications trials in China. ISIJ Int, 2008, 48: 1126–1132

    Article  Google Scholar 

  6. Pontremoli M. Metallurgical and technological challenges for the development of high-performance X100-X120 linepipe steels. In: Proceeding of the second international conference on advanced structural steels (ICASS 2004), Shanghai, China, 2004. 39

  7. Ashby M F. The deformation of plastically nonhomogeneous materials. Philos Mag, 1970, 21: 399–424

    Article  Google Scholar 

  8. Torizukai O S, Nagai K. Strain-hardening due to dispersed cementite for low carbon ultrafine-grained steels. ISIJ Int, 2004, 44(6): 1063–1071

    Article  Google Scholar 

  9. Wang X H, Jiang M, Chen B, et al. Study on formation of non-metallic inclusions with lower melting temperatures in extra low oxygen special steels. Sci China Tech Sci, 2012, 55: 1863–1872

    Google Scholar 

  10. Anderson D. Application and repairability of advanced high-strength steels. American Iron and Steel Institute, 2008, http://www.auto-steel.org

  11. Heimbuch R. Overview: Auto/Steel partnership, www.a-sp.org

  12. Jacques P, Furnemont Q, Mertens A, et al. On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity. Phil Mag A, 2001, A81(7): 1789–1812

    Article  Google Scholar 

  13. Frommeyer G, Brux U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2003, 43(3): 438–446

    Article  Google Scholar 

  14. Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels ISIJ Int, 2005, 45(11): 1736–1740

    Google Scholar 

  15. Shi J, Cao W Q, Dong H. Ultrafine grained high strength low alloy steel with high strength and high ductility. Mater Sci Forum, 2010, 654–656: 238–241

    Article  Google Scholar 

  16. Cao W Q, Wang C Y, Shi J, et al. Application of quenching and partitioning to improve the ductility of ultrahigh strength low alloy steel. Mater Sci Forum, 2010, 654–656: 29–32

    Article  Google Scholar 

  17. Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martenstic steel. Mater Sci Eng A, 2010, 527: 3442–3449

    Article  Google Scholar 

  18. Wang C Y, Shi J, Cao W Q, et al. Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process. Acta Metall Sin, 2011, 47(6): 720–726

    Google Scholar 

  19. Speer J G, Hackenberg R E, DeCooman B C, et al. Interface migration during annealing of martensite/austenite mixture. Phil Mag Lett, 2007, 87: 379–382

    Article  Google Scholar 

  20. Speer J G, Matlock D K, Cooman B C, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater, 2003, 51: 2611–2622

    Article  Google Scholar 

  21. Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels. Met Mater Trans A, 1972, 3: 905

    Article  Google Scholar 

  22. Wang C Y. Investigation on 30 GPa% grade ultrahigh-strength martensitic-austenitic steels. Degree of Doctor Dissertation. Beijing: Central Iron & Steel Research Institute, 2010

    Google Scholar 

  23. Gazder A A, Cao W Q, Davies C H J. An EBSD investigation of interstitial-free steel subjected to equal channel angular extrusion. Mater Sci Eng A, 2008, 497: 341–352

    Article  Google Scholar 

  24. Davies R G. The deformation behavior of a vanadium-strengthened dual phase steel. Metall Mater Trans A, 1978, 9: 41–52

    Article  Google Scholar 

  25. Davies R G. Influence of martensite composition and content on the properties of dual phase steels. Metall Trans, 1978, 9A: 671–679

    Google Scholar 

  26. Slycken J V, Verleysen P, Degrieck J, et al. Dynamic response of aluminium containing TRIP steel and its constituent phases. Mater Sci Eng A, 2007, 460–461: 516–524

    Google Scholar 

  27. Grajcar A, Krztoń H. Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel. J Achievements Mater Manuf Eng, 2009, 35: 169–176

    Google Scholar 

  28. Grajcar A. Determination of the stability of retained austenite in TRIP-aided bainitic steel. J Achievements Mater Manuf Eng, 2007, 20: 111–114

    Google Scholar 

  29. Muránsky O, Horňak P, Lukáš P, et al. Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition. J Achievements Mater Manuf Eng, 2006, 14: 26–29

    Google Scholar 

  30. Zackay V F, Parker E R, Fahr D. The enhancement of ductility in high-strength steels. Trans ASM, 1967, 60(2): 252–259

    Google Scholar 

  31. Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Pergamon, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H. High performance steels: Initiative and practice. Sci. China Technol. Sci. 55, 1774–1790 (2012). https://doi.org/10.1007/s11431-012-4911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4911-9

Keywords

Navigation