Skip to main content
Log in

Direct growth of tungsten oxide nanorods from heated tungsten foils

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Tungsten oxide (W18O49) nanorods were grown by directly heating tungsten foils covered with potassium bromide (KBr) in low-pressure wet oxygen. The approach featured such advantages as convenient manipulation, low cost and rapid accessibility to high temperatures. A solid-liquid-solid (SLS) mechanism is believed to have dominated the growth process, in which the W18O49 nanorods segregated from eutectic droplets of potassium tungstate and tungsten oxide. The ultraviolet photoelectron spectroscopy (UPS) analysis disclosed that the valence band maximum (VBM) of these nanorods was approximately 9 eV below the vacuum level. The feasibility of using the such-fabricated nanorods as field emitters was tested and the related mechanism was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadam P M, Tarwal N L, Shinde P S, et al. From beads-to-wires-to-fibers of tungsten oxide: Electrochromic response. Appl Phys A, 2009, 97: 323–330

    Article  Google Scholar 

  2. Zhao Z G, Miyauchi M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem Int Ed, 2008, 47: 7051–7055

    Article  Google Scholar 

  3. Szilágyi I M, Saukko S, Mizsei J, et al. Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid-State Sci, 2010, 12: 1857–1860

    Article  Google Scholar 

  4. Zhu J, Wang S L, Xie S H, et al. Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem Commun, 2011, 47: 4403–4405

    Article  Google Scholar 

  5. Liu K, Foord D T, Scipioni L. Easy growth of undoped and doped tungsten oxide nanowires with high purity and orientation. Nanotech, 2005, 16: 10–14

    Article  Google Scholar 

  6. Wang H, Xie Q, Zhang Y B, et al. Direct growth and photoelectrochemical properties of tungsten oxide nanobelt arrays. Nanotech, 2008, 19: 065704

    Article  Google Scholar 

  7. Zhang W, Xi Z H, Zhang G M, et al. Carbon nanotube as the core of conical carbon fiber: Fabrication, characterization and field emission property. Appl Phys A, 2007, 86: 171–175

    Article  Google Scholar 

  8. Liu J, Zhang G M, Qin J F, et al. Field emission from combined structures of carbon nanotubes and carbon nanofibers. Physica B, 2010, 405: 2551–2555

    Article  MathSciNet  Google Scholar 

  9. Woo K, Hong J, Ahn J, et al. Coordinatively induced length control and photoluminescence of W18O49 nanorods. Inorg Chem, 2005, 44: 7171–7174

    Article  Google Scholar 

  10. Frey G L, Rothschild A, Sloan J, et al. Investigations of nonstoichiometric tungsten oxide nanoparticles. J Solid State Chem, 2001, 162: 300–314

    Article  Google Scholar 

  11. Azimirad R, Goudarzi M, Akhavan O, et al. Growth and characterization of sodium-tungsten oxide nanobelts with U-shape cross section. J Cryst Growth, 2008, 310: 824–828

    Article  Google Scholar 

  12. Qi H, Wang C Y, Liu J, et al. A simple method for the synthesis of highly oriented potassium-doped tungsten-oxide nanowires. Adv Mater, 2003, 15: 411–414

    Article  Google Scholar 

  13. Gelsing R J H, Stein H N, Stevels J M, et al. The phase diagram K2WO4-WO3. Recueil, 1965, 84: 1452–1458

    Article  Google Scholar 

  14. Ertl G, Küppers J. Low Energy Electrons and Surface Chemistry. VCH, Weinheim, 1985. 101

    Google Scholar 

  15. Park Y, Choong V, Gao Y, et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl Phys Lett, 1996, 68: 2699–2701

    Article  Google Scholar 

  16. Beerbom M M, Lägel B, Cascio A J, et al. Direct comparison of photoemission spectroscopy and in situ Kelvin probe work function measurements on indium tin oxide films. J Electron Spectrosc Relat Phenom, 2006, 152: 12–17

    Article  Google Scholar 

  17. Hong K Q, Xie M H, Hu R, et al. Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl Phys Lett, 2007, 90: 173121

    Article  Google Scholar 

  18. Wang S L, He Y H, Zouc J, et al. Synthesis of tungsten oxide tapered needles with nanotips. J Cryst Growth, 2007, 303: 574–579

    Article  Google Scholar 

  19. Hsieh Y T, Chen U S, Hsueh S H, et al. Rapid formation of tungsten oxide nanobundles with controllable morphology. Appl Surf Sci, 2011, 257: 3504–3509

    Article  Google Scholar 

  20. Wang S L, He Y H, Fang X S, et al. Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition. Adv Mater, 2009, 21: 2387–2392

    Article  Google Scholar 

  21. Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4: 89–90

    Article  Google Scholar 

  22. Merkulov V I, Lowndes D H, Wei Y Y, et al. Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl Phys Lett, 2000, 76: 3555–3557

    Article  Google Scholar 

  23. Azimirad R, Akhavan O, Moshfegh A Z. Simple method to synthesize NaxWO3 nanorods and nanobelts. J Phys Chem C, 2009, 113: 13098–13102

    Article  Google Scholar 

  24. Hong K Q, Yiu W C, Wu H S, et al. A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotech, 2005, 16: 1608–1611

    Article  Google Scholar 

  25. Wang S L, He Y H, Liu X L, et al. Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process. J Cryst Growth, 2011, 316: 137–144

    Article  Google Scholar 

  26. Zhang J L, Xi Z H, Wu Y, et al. Growth of micron-sized tubes of tungsten oxide. Colloids Surf A: Physicochem Eng Aspects, 2008, 313–314: 670–673

    Article  Google Scholar 

  27. Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1999. 87

    Google Scholar 

  28. Bonard J M, Maier F, Stöckli T, et al. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy, 1998, 73: 7–15

    Article  Google Scholar 

  29. Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett, 2002, 81: 3648–3650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GengMin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Zhang, G. & Xing, Y. Direct growth of tungsten oxide nanorods from heated tungsten foils. Sci. China Technol. Sci. 55, 1503–1508 (2012). https://doi.org/10.1007/s11431-012-4804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4804-y

Keywords

Navigation