Skip to main content
Log in

Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method. X-ray diffraction, transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples. It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion, which resulted in the formation of a novel ZnO-nanotube nano composite. In this work, the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao C N R, Satishkumar B C, Govindaraj A, et al. Nanotubes. Chem Phys Chem, 2001, 2: 78–105

    Article  Google Scholar 

  2. Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123: 3838–3839

    Article  Google Scholar 

  3. Kong J, Chapline M G, Dai H J. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater, 2001, 13: 1384–1386

    Article  Google Scholar 

  4. Baker S E, Cai W, Lasseter T L, et al. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett, 2002, 2: 1413–1417

    Article  Google Scholar 

  5. Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes. J Am Chem Soc, 2002, 124: 760–761

    Article  Google Scholar 

  6. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933–937

    Article  Google Scholar 

  7. Lin Y, Ska H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquid interfaces. Science, 2003, 299: 226–229

    Article  Google Scholar 

  8. Han W Q, Zettl A. Coating single-walled carbon nanotubes with tin oxide. Nano Lett, 2003, 3: 681–683

    Article  Google Scholar 

  9. Wen Z H, Wang Q, Zhang Q, et al. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater, 2007, 17: 2772–2778

    Article  Google Scholar 

  10. Banerjee S, Wong S S. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett, 2002, 2: 195–200

    Article  Google Scholar 

  11. Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multi-walled carbon nanotubes for electronic device applications. Nano Lett, 2003, 3: 447–453

    Article  Google Scholar 

  12. Haremza J M, Hahn M A, Krauss T D, et al. Attachment of single CdSe nanocrystals to individual singlewalled carbon nanotubes. Nano Lett, 2002, 2: 1253–1258

    Article  Google Scholar 

  13. Lee S W, Sigmund W M. Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem Commun, 2003, (6): 780–781

  14. Fu Q, Lu C, Liu J. Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Lett, 2002, 2: 329–332

    Article  Google Scholar 

  15. Seeger T, Kohler T, Frauenheim T, et al. Nanotube composites: Novel SiO2 coated carbon nanotubes. Chem Commun, 2002, (1): 34–35

  16. Ahmad M, Pan C F, Zhu J. Electrochemical determination of L-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J Mater Chem, 2010, 20: 7169–7174

    Article  Google Scholar 

  17. Yang Y, Qi J J, Guo W, et al. Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Phys Chem Chem Phys, 2010, 12: 12415–12419

    Article  Google Scholar 

  18. Yun S, Lee J, Chung J, et al. Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping. J Phys Chem Solids, 2010, 71: 1724–1731

    Article  Google Scholar 

  19. Park J Y, Choi S W, Kim S S. Fabrication of a highly sensitive chemical sensor based on ZnO nanorod arrays. Nanoscale Res Lett, 2010, 5: 353–359

    Article  Google Scholar 

  20. Fortunato E, Barquinha P, Pimentel A, et al. Recent advances in ZnO transparent thin film transistors. Thin Solid Films, 2005, 487: 205–211

    Article  Google Scholar 

  21. Nishii J, Hossain F M, Takagi S, et al. High mobility thin film transistors with transparent ZnO channels. Jpn J Appl Phys, 2003, 42: 347–349

    Article  Google Scholar 

  22. Jo J, Seo O, Choi H, et al. Enhancement-mode ZnO thin-film transistor grown by metalorganic chemical vapor deposition. Appl Phy Exp, 2008, 1: 041202

    Article  Google Scholar 

  23. Norris B J, Anderson J, Wager J F, et al. Spin-coated zinc oxide transparent transistors. J Phys D-Appl Phys, 2003, 36: 105–107

    Article  Google Scholar 

  24. Sun B Q, Sirringhaus H. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J Am Chem Soc, 2006, 128: 16231–16237

    Article  Google Scholar 

  25. Li C S, Wang D Z, Liang T X, et al. Oxidation of multi-walled carbon nanotubes by air: Benefits for electric double layer capacitors. Powder Technol, 2004, 142: 175–179

    Article  Google Scholar 

  26. Li C S, Wang D Z, Liang T X, et al. A study of activated carbon nanotubes as double-layer capacitors electrode materials. Mater Lett, 2004, 58: 3774–3777

    Article  Google Scholar 

  27. Bhabendra K P, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999, 37: 1323–1332

    Article  Google Scholar 

  28. Figueiredo J L, Pereira M F R, Freitas M M A. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37: 1379–1389

    Article  Google Scholar 

  29. Park Y S, Choi Y C, Kim K S, et al. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 2001, 39: 655–661

    Article  Google Scholar 

  30. Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: From nanodots, to nanorods. Angew Chem-Int Edit, 2002, 41: 1118–1191

    Article  Google Scholar 

  31. Perez-Cabero M, Rodriguez-Ramos I, Guerrero-Ruiz A. Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal, 2003, 215: 305–316

    Article  Google Scholar 

  32. Yildirim O A, Durucan C. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J Alloy Compd, 2010, 506: 944–949

    Article  Google Scholar 

  33. Natter H, Schmelzer M, Loffler M S, et al. Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction. J Phys Chem B, 2000, 104: 2467–2476

    Article  Google Scholar 

  34. Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl Catal B: Environ, 2003, 46: 251–25

    Article  Google Scholar 

  35. Hayat K, Gondal M A, Khaled M M, et al. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A-Gen, 2011, 393: 122–129

    Article  Google Scholar 

  36. Chao C H, Chan C H, Huang J J, et al. Manipulated the band gap of 1D ZnO nano-rods array with controlled solution concentration and its application for DSSCs. Curr Appl Phys, 2011, 11: S136–S139

    Article  Google Scholar 

  37. Khan A A, Khalid M. Synthesis of nano-sized ZnO and polyaniline-zinc oxide composite: Characterization, stability in terms of DC electrical conductivity retention and application in ammonia vapor detection. J Appl Polym Sci, 2010, 117: 1601–1607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChenSha Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Qiao, Y. & Li, Y. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process. Sci. China Technol. Sci. 55, 1365–1370 (2012). https://doi.org/10.1007/s11431-012-4787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4787-8

Keywords

Navigation