Science China Technological Sciences

, Volume 55, Issue 5, pp 1224–1229

High resolution full-spectrum water Raman lidar

  • FuChao Liu
  • Fan Yi
  • JingYu Jia
  • YunPeng Zhang
  • ShaoDong Zhang
  • ChangMing Yu
  • Ying Tan
Article
  • 145 Downloads

Abstract

Knowledge of the temporal-spatial distribution of water content in atmosphere and water phase change in cloud is important for atmospheric study. For this purpose, we have developed a high resolution full-spectrum water Raman lidar that can collect Raman signals from ice, water droplets and water vapor simultaneously. A double-grating polychromator and a 32-channel photomultiplier-tube detector are used to obtain a spectral resolution of ∼0.19 nm in the full Raman spectrum range of water. Preliminary observations present the water Raman spectrum characteristics of both the mixed-phase cloud and humid air under cloudless condition.

Keywords

cloud water phase high spectral resolution Raman lidar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooney J A. Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter. J Appl Meteorol, 1970, 9: 182–184CrossRefGoogle Scholar
  2. 2.
    Melfi S H, Whiteman D N. Observation of lower atmospheric moisture structure and its evolution using a Raman lidar. Bull Am Meteorol Soc, 1985, 66: 1288–1292CrossRefGoogle Scholar
  3. 3.
    Whiteman D N, Melfi S H, Ferrare R A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl Opt, 1992, 31: 3068–3082CrossRefGoogle Scholar
  4. 4.
    Ansmann A, Riebesell M, Wandinger U, et al. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl Phys B, 1992, 55: 18–28CrossRefGoogle Scholar
  5. 5.
    Goldsmith J E M, Bisson S E, Ferrare R A, et al. Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems. Bull Am Meteorol Soc, 1994, 75: 975–982CrossRefGoogle Scholar
  6. 6.
    Melfi S H, Evans K D, Li J, et al. Observation of Raman scattering by cloud droplets in the atmosphere. Appl Opt, 1997, 36(15): 3551–3559CrossRefGoogle Scholar
  7. 7.
    Whiteman D N, Melfi S H. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J Geophys Res, 1999, 104(D24): 31411–31419CrossRefGoogle Scholar
  8. 8.
    Veselovskii I A, Cha H K, Kim D H, et al. Raman lidar for the study of liquid water and water vapor in the troposphere. Appl Phys B, 2000, 71: 113–117CrossRefGoogle Scholar
  9. 9.
    Veselovskii I A, Cha H K, Kim D H, et al. Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization lidar. Appl Phys B, 2001, 73: 739–744CrossRefGoogle Scholar
  10. 10.
    Wang Z, Whiteman D N, Demoz B B. A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys Res Lett, 2004, 31: L15101CrossRefGoogle Scholar
  11. 11.
    Vincenzo R, Iarlori M, Rocci G, et al. Raman lidar observations of cloud liquid water. Appl Opt, 2004, 43(35): 6440–6453CrossRefGoogle Scholar
  12. 12.
    Arshinov F, Bobrovnikov S M, Nadeev A I, et al. Lidar remote sensing in atmospheric and Earth sciences. 21st International Laser Radar Conference, QC, Canada, 2002Google Scholar
  13. 13.
    Kim D, Baik S, Kim Y, et al. Lidar Measurement of a Full Raman Spectrum of Water by Using a Multichannel Detector. J Korea Phys Soc, 2009, 54: 38–43CrossRefGoogle Scholar
  14. 14.
    Scherer J R, Go M K, Kint S. Raman spectra and structure of water from −10 to 90. J Phys Chem, 1974, 78: 1304–1313CrossRefGoogle Scholar
  15. 15.
    D’Arrigo G, Maisano G, Mallamace F, et al. Raman scattering and structure of normal and super-cooled water. J Chem Phys, 1981, 75: 4264–4270CrossRefGoogle Scholar
  16. 16.
    Walrafen G E, Hokmabadi M S, Yang W H. Raman isosbestic points from liquid water. J Chem Phys, 1986, 85: 6964–6969CrossRefGoogle Scholar
  17. 17.
    Walrafen G E, Fisher M R, Hokmabadi M S, et al. Temperature dependence of the low- and high-frequency Raman scattering from liquid water. J Chem Phys, 1986, 85: 6970–6981CrossRefGoogle Scholar
  18. 18.
    Dolenko T A, Churina I V, Fadeev V V, et al. Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media. J Raman Spectrosc, 2000, 31: 863–870CrossRefGoogle Scholar
  19. 19.
    Garciaa C S, Abedinb M N, Sharmac S K, et al. Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals. Proc of SPIE, 2006, 6302: 630215, doi: 10.1117/12.680879CrossRefGoogle Scholar
  20. 20.
    Avila G, Ferna’ndez J M, Mate B, et al. Ro-vibrational Raman cross sections of water vapor in the OH stretching region. J Mo Spectrosc, 1999, 196: 77–92CrossRefGoogle Scholar
  21. 21.
    Kim D, Song I, Cheong H D, et al. Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis. Opt Rev, 2010, 17(2): 84–89CrossRefGoogle Scholar
  22. 22.
    Liu B. Detection of the atmosphere over Wuhan with a Fe fluorescence lidar (in Chinese). Doctoral Dissertation. Wuhan: Wuhan University, 2005Google Scholar
  23. 23.
    Wandinger U. Raman lidar. in: Weitkamp C, ed. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, Chap 9. New York: Springer, 2005Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • FuChao Liu
    • 1
    • 2
    • 3
  • Fan Yi
    • 1
    • 2
    • 3
  • JingYu Jia
    • 1
    • 2
    • 3
  • YunPeng Zhang
    • 1
    • 2
    • 3
  • ShaoDong Zhang
    • 1
    • 2
    • 3
  • ChangMing Yu
    • 1
    • 2
    • 3
  • Ying Tan
    • 1
    • 2
    • 3
  1. 1.School of Electronic InformationWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Geospace Environment and GeodesyMinistry of EducationWuhanChina
  3. 3.State Observatory for Atmospheric Remote SensingWuhanChina

Personalised recommendations