Skip to main content
Log in

Measurement of thermal boundary conductance between metal and dielectric materials using femtosecond laser transient thermoreflectance technique

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The thermal boundary conductance of Al/SiO2, Al/Si, Au/SiO2, and Au/Si are measured by a femtosecond laser transient thermoreflectance technique. The distinct differences of the interfacial thermal conductance between these samples are observed. For the same metal film, the thermal boundary conductance between metal and substrate decreases with the thermal conductivity of the substrate. The measured results are explained with the phonon diffusion mismatch model by introducing a phonon transmission coefficient across the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kapitza P L. The study of heat transfer in helium II. J Phys, 1941, 11: 1–31

    Google Scholar 

  2. Pollack G L. Kapitza resistance. Rev Mod Phys, 1969, 41(1): 48–81

    Article  Google Scholar 

  3. Swartz E T, Pohl R O. Thermal-boundary resistance. Rev Mod Phys, 1989, 61(3): 605–668

    Article  Google Scholar 

  4. Stevens R J, Zhigilei L V, Norris P M. Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations. Int J Heat Mass Tran, 2007, 50(19–20): 3977–3989

    Article  MATH  Google Scholar 

  5. Da Silva L W, Kaviany M. Micro-thermoelectric cooler: Interfacial effects on thermal and electrical transport. Int J Heat Mass Tran, 2004, 47(10–11): 2417–2435

    Article  Google Scholar 

  6. Mahan G D, Woods L M. Multilayer thermionic refrigeration. Phys Rev Lett, 1998, 80(18): 4016–4019

    Article  Google Scholar 

  7. Cahill D G, Pohl R O. Thermal-conductivity of amorphous solids above the plateau. Phys Rev B, 1987, 35(8): 4067–4073

    Article  Google Scholar 

  8. Lee S M, Cahill D G. Heat transport in thin dielectric films. J Appl Phys, 1997, 81(6): 2590–2595

    Article  Google Scholar 

  9. Cahill D G, Bullen A, Lee S M. Interface thermal conductance and the thermal conductivity of multilayer thin films. High Temp-High Press, 2000, 32(2): 135–142

    Article  Google Scholar 

  10. Borca-Tasciuc T, Kumar A R, Chen G. Data reduction in 3 omega method for thin-film thermal conductivity determination. Rev Sci Instrum, 2001, 72(4): 2139–2147

    Article  Google Scholar 

  11. Raudzis C E, Schatz F, Wharam D. Extending the 3 omega method for thin-film analysis to high frequencies. J Appl Phys, 2003, 93(10): 6050–6055

    Article  Google Scholar 

  12. Eesley G L. Observation of non-equilibrium electron heating in copper. Phys Rev Lett, 1983, 51(23): 2140–2143

    Article  Google Scholar 

  13. Paddock C A, Eesley G L. Transient thermoreflectance from thin metal-films. J Appl Phys, 1986, 60(1): 285–290

    Article  Google Scholar 

  14. Elsayedali H E, Norris T B, Pessot M A, et al. Time-resolved observation of electron-phonon relaxation in copper. Phys Rev Lett, 1987, 58(12): 1212–1215

    Article  Google Scholar 

  15. Brorson S D, Kazeroonian A, Moodera J S, et al. Femtosecond room-temperature measurement of the electron-phonon coupling constant-lambda in metallic superconductors. Phys Rev Lett, 1990, 64(18): 2172–2175

    Article  Google Scholar 

  16. Hostetler J L, Smith A N, Czajkowsky D M, et al. Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr and Al. Appl Optics, 1999, 38(16): 3614–3620

    Article  Google Scholar 

  17. Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev B, 1999, 59(12): 8105–8113

    Article  Google Scholar 

  18. Daly B C, Maris H J, Nurmikko A V, et al. Optical pump-and-probe measurement of the thermal conductivity of nitride thin films. J Appl Phys, 2002, 92(7): 3820–3824

    Article  Google Scholar 

  19. Stoner R J, Maris H J. Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 K. Phys Rev B, 1993, 48(22): 16373–16387

    Article  Google Scholar 

  20. Gundrum B C, Cahill D G, Averback R S. Thermal conductance of metal-metal interfaces. Phys Rev B, 2005, 72: 245426

    Article  Google Scholar 

  21. Norris P M, Smith A N, Hostetler J L. Thermal boundary resistance measurements using a transient thermoreflectance technique. Microscale Therm Eng, 2000, 4(1): 51–60

    Article  Google Scholar 

  22. Stevens R J, Smith A N, Norris P M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J Heat Trans-T Asme, 2005, 127(3): 315–322

    Article  Google Scholar 

  23. Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials. Phys Rev B, 2006, 73: 144301

    Article  Google Scholar 

  24. Norris P M, Hopkins P E, Stevens R J. Influence of inelastic scattering at metal-dielectric interfaces. J Heat Trans-T Asme, 2008, 130: 022401

    Article  Google Scholar 

  25. Schmidt A, Chiesa M, Chen X Y, et al. An optical pump-probe technique for measuring the thermal conductivity of liquids. Rev Sci Instrum, 2008, 79: 064902

    Article  Google Scholar 

  26. Little W A. The transport of heat between dissimilar solids at low temperatures. Can J Phys, 1959, 37(3): 334–349

    Article  Google Scholar 

  27. Prasher R S, Phelan P E. A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J Heat Trans-T Asme, 2001, 123(6): 1194–1194

    Article  Google Scholar 

  28. Hopkins P E. Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces. J Appl Phys, 2009, 106: 013528

    Article  Google Scholar 

  29. Hopkins P E, Norris P M. Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces. J Heat Trans-T Asme, 2009, 131: 022402

    Article  Google Scholar 

  30. Stevens R J, Smith A N, Norris P M. Signal analysis and characterization of experimental setup for the transient thermoreflectance technique. Rev Sci Instrum, 2006, 77: 084901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhongHua Ni or YunFei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Bi, K., Wang, J. et al. Measurement of thermal boundary conductance between metal and dielectric materials using femtosecond laser transient thermoreflectance technique. Sci. China Technol. Sci. 55, 1044–1049 (2012). https://doi.org/10.1007/s11431-012-4754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4754-4

Keywords

Navigation