Skip to main content
Log in

The nonlinear theory for sediment ripple dynamic process of straight river

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

There are various sand ripples in the natural world. The viewpoint of Yalin is that local disturbances result in laminar instability and in sand-ripple formation, namely, local disturbance→the instability of the laminar flow→the formation of sand ripples. Based on this viewpoint, a theoretical model of the resonant triad interaction and its nonlinear interaction with the sediment is established. The purpose of this model is to explain the formation and evolution of the sand-ripple and allow for analysis of the instability of open-channel flow caused by it and sand-ripple hydro-dynamic process. This model will not only pave a road to explore the mechanism of interaction between bed-form and turbulence, but also provide a good base for the study of aeolian sand-ripple formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arved J R. Loose Boundary Hydraulics. Oxford, Great Britain: Pergamon Press, 1990

    Google Scholar 

  2. Xu J P. Observations of plan-view sand ripple behavior and spectral wave climate on the inner shelf of San Pedro Bay, California. Cont Shelf Res, 2005, 25(3): 373–396

    Article  Google Scholar 

  3. Morales J A, Delgado I, Gutierrez-Mas J M. Sedimentary characterization of bed types along the Guadiana estuary (SW Europe) before the construction of the Alqueva dam, Estuarine. Coast Shelf Sci, 2006, 70(1–2): 117–131

    Article  Google Scholar 

  4. Andre R, William U. An experimental study on the ripple-dune transition. Earth Surf Proc Landf, 2001, 26: 615–629

    Article  Google Scholar 

  5. Endo N, Kubo H, Sunamura T. Barchan-shaped ripple marks in a wave flume. Earth Surf Proc Landf, 2004, 29: 31–42

    Article  Google Scholar 

  6. Yizhaq H, Balmforth N J, Provenzale A. Blown by wind: nonlinear dynamics of aeolian sand ripples. Physica D, 2004, 195: 207–228

    Article  MathSciNet  MATH  Google Scholar 

  7. Le Roux J P, Rojas E M. Sediment transport patterns determined from grain size parameters: Overview and state of the art. Sedim Geol, 2007, 202: 473–488

    Article  Google Scholar 

  8. O’Donoghue T, Clubb G S. Sand ripples generated by regular oscillatory flow. Coast Eng, 2001, 44(2): 101–115

    Article  Google Scholar 

  9. O’Donoghue T, Wright S. Concentrations in oscillatory sheet flow for well sorted and graded sands. Coast Eng, 2004, 50(3): 117–138

    Article  Google Scholar 

  10. Conrad A P, Douglas C M. Phytoplankton deposition to permeable sediments under oscillatory flow: Effects of ripple geometry and resuspension. Cont Shelf Res, 2006, 26(15): 1806–1825

    Article  Google Scholar 

  11. Piet H, Paul B, Pim van S, et al. Bedform migration and bedload transport on an intertidal shoal. Cont Shelf Res, 2004, 24(11): 1249–1269

    Article  Google Scholar 

  12. Kyle F E B, Jon J W, Peter D T, et al. Acoustic instrumentation for measuring near-bed sediment processes and hydrodynamics. J Exp Marin Biol Ecol, 2003, 285–286: 105–118

    Google Scholar 

  13. Chien N, Wan Z H. Mechanics of Sediment Transport. Beijing: Science Press, 1984

    Google Scholar 

  14. Wilbers A, Brinke W T. The response of subaqueous dunes to floods in sand and gravel bed reaches of the Dutch Rhine. Sedimentology, 2003, 50: 1013–1034

    Article  Google Scholar 

  15. Nelson J. The initial instability and finite-amplitude stability of alternate bars in straight channels. Earth Sci Rev, 1990, 29: 97–115

    Google Scholar 

  16. Anderson R S, Bunas K L. Grain size segregation and stratigraphy in Aeolian ripples modeled with a cellular automaton. Nature, 1993, 365: 740–743

    Article  Google Scholar 

  17. Zheng X J, Bo T L, Xie L. DPTM simulation of Aeolian sand ripple. Sci China Ser G-Phys Mech Astron, 2008, 51(3): 328–336

    Article  MATH  Google Scholar 

  18. Bo T L, Zheng X J. Numerical approach to wind ripple in desert. Int J Nonl Sci & Num Simul, 2007, 8(2): 223–228

    Article  Google Scholar 

  19. Prigozhin L. Nonlinear dynamics of Aeolian sand ripples. Phys Rev E, 1999, 60: 729–773

    Article  Google Scholar 

  20. Valance A, Rioual F. A nonlinear model for Aeolian sand ripples. Eur Phys J B, 1999, 10: 543–548

    Article  Google Scholar 

  21. Csahók Z, Misbah C, Rioual F, et al. Dynamics of aeolian sand ripples. Eur Phys J E, 2000, 3: 71–86

    Article  Google Scholar 

  22. Best J. The fluid dynamics of small-scale alluvial bedforms. In: Carling P, ed. Advances in Fluuivial Dynamics and Stratigraphy. Wiley: Chichester, 1996. 65–125

    Google Scholar 

  23. Smith C R. Coherent flow structures in smooth-wall turbulent boundary layers: Facts, mechanisms and speculation. In: Ashworth P, Bernnet S, Best J M, eds. Coherent Flow Structures in Open Channels. Wily: Chichester, 1996. 1–39

    Google Scholar 

  24. Bai Y C, Dong X. Experimental study on turbulent characteristics of flow over sand rippled bed. J Hydrodynam, Ser B, 2006, 18(3): 449–454

    Article  MathSciNet  Google Scholar 

  25. Yalin M S. Mechanics of Sediment Transport. Oxford, Great Britain: Pergamon Press, 1972

    Google Scholar 

  26. Bai Y C. Research into the layer current boundary layer C type buckling. J Air Dynam, Quart, 1995, 1: 92–98

    Google Scholar 

  27. Bai Y C, Andreas M, Jiang C B. A linear theory for disturbance of coherent structure and mechanism of sand wave in open channel flow. Int J Sed Res, 2001, 15(2): 234–243

    Google Scholar 

  28. Saric W S. Forced and unforced subharmonic resonance in boundary layer transtion. AIAA, 22nd Aerosoace Science Meeting, Reno Neveda, 1984. 9-12

  29. Bai Y C, Luo J S. The loss of stability of laminar flow in open channel and the mechanism of sand ripple formation. Appl Math Mech, 2002, 23(3): 276–293

    Article  MathSciNet  MATH  Google Scholar 

  30. Bai Y C, Xu H J. A study on the stability of laminar open-channel flow over a sandy rippled bed. Sci China Ser E-Eng & Mat Sci, 2005, 48(1): 83–103

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu H J, Bai Y C. Stability characteristics of the open channel flow above the asymmetrical irregular sand ripples. Sci China Ser G-Phys Mech Astron, 2010, 53(8): 1515–1529

    Article  Google Scholar 

  32. Bai Y C, Xu H J, Xu D. Nonlinear dynamical characteristics of bed load motion. Sci China Ser E-Eng & Mat Sci, 2006, 49(3): 365–384

    Article  Google Scholar 

  33. Stuart J T. On the non-linear mechanics of hydrodynamic stability. J Fluid Mechanics, 1958, 4: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou H, Fujimura K. Further improvement of weakly nonlinear theory of hydrodynamic stability. Sci China Ser A-Math, 1998, 41(1): 84–92

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu X S, Luo J S. Linear and nonlinear instabilities of a Blasius boundary layer perturbed by streamwise vortices. Part 1. Steady streaks. J Fluid Mech, 2003, 25(483): 225–248

    Article  MathSciNet  Google Scholar 

  36. Kennedy J F. The formation of sediment ripples, dunes, antidunes. Ann Rev Flu Mech, 1969, 1: 147–168

    Article  Google Scholar 

  37. Taizo H. Formation of dunes and antidunes in open channels. J Hyd Div Proc Amer Soc Civil Engrs, 1970, 96(NY2): 357–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuChuan Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Bai, Y. The nonlinear theory for sediment ripple dynamic process of straight river. Sci. China Technol. Sci. 55, 753–771 (2012). https://doi.org/10.1007/s11431-011-4720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4720-6

Keywords

Navigation