Skip to main content
Log in

Recent progress in the fields of tuning the band gap of quantum dots

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Band gap, which can be tuned by changing the size of quantum dots (QDs) based on the quantum confinement effect, plays a fundamental role in electrical and optical properties of QDs. However, the tuning of the band gap by changing the size results in a series of intrinsic problems, such as the instability of the extremely small QDs, negative combination with biomolecules because of the large size of QDs, etc. Recently, several new methods have been developed to further study and improve the tuning of the band gap. In this paper, we summarized the recent progress in the fields of tuning the band gap of QDs, including alloyed QDs, core-shell QDs and doped QDs. The review has also prospected the development trend of tuning the band gap as well as their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018

    Article  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013–2016

    Article  Google Scholar 

  3. Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297(5579): 237–240

    Article  Google Scholar 

  4. Erwin S C, Zu L J, Haftel M I, et al. Doping semiconductor nanocrystals. Nature, 2005, 436(7047): 91–94

    Article  Google Scholar 

  5. Srivastava S, Santos A, Critchley K, et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science, 2010, 327(5971): 1355–1359

    Article  Google Scholar 

  6. Smith A M, Nie S M. Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts Chem Res, 2010, 43(2): 190–200

    Article  Google Scholar 

  7. Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc, 2002, 124(2): 2049–2055

    Article  Google Scholar 

  8. Zheng Y G, Yang Z C, Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1−xCdxSe alloyed quantum dots. Adv Mater, 2007, 19(11): 1475–1479

    Article  Google Scholar 

  9. Ma Q, Su X G. Near-infrared quantum dots: synthesis, functionalization and analytical applications. Analyst, 2010, 135(8): 1867–1877

    Article  Google Scholar 

  10. Regulacio M D, Han M Y. Composition-tunable alloyed semiconductor nanocrystals. Accounts Chem Res, 2010, 43(5): 621–630

    Article  Google Scholar 

  11. Reiss P, Protiere M, Li L. Core/Shell semiconductor nanocrystals. Small, 2009, 5(2): 154–168

    Article  Google Scholar 

  12. Srivastava B B, Jana S, Pradhan N. Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J Am Chem Soc, 2011, 133(4): 1007–1015

    Google Scholar 

  13. Xie R G, Rutherford M, Peng X G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc, 2009, 131(15): 5691–5697

    Article  Google Scholar 

  14. Cassette E, Pons T, Helle M, et al. Synthesis and characterization of near-infrared Cu-In-Se/ZnS core/shell quantum dots for in vivo imaging. Chem Mater, 2010, 22(22): 6117–6124

    Article  Google Scholar 

  15. Park J, Kim S W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J Mater Chem, 2011, 21(11): 3745–3750

    Article  Google Scholar 

  16. Kim S W, Zimmer J P, Ohnishi S, et al. Engineering InAsxP1−x / InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc, 2005, 127(30): 10526–10532

    Article  Google Scholar 

  17. Karar N, Jayaswal M, Halder S K, et al. Photoluminescence shifts in silver-doped nanocrystalline Cd1−x ZnxS. J Alloy Compd, 2007, 436(1–2): 61–64

    Article  Google Scholar 

  18. Chawla A K, Singhal S, Nagar S, et al. Study of composition dependent structural, optical, and magnetic properties of Cu-doped Zn1−x CdxS nanoparticles. J Appl Phys, 2010, 108(12): 123519

    Article  Google Scholar 

  19. Dong B H, Cao L X, Su G, et al. Water-soluble ZnS:Mn/ZnS core/shell nanoparticles prepared by a novel two-step method. J Alloy Compd, 2010, 492(1–2): 363–367

    Article  Google Scholar 

  20. Kim J U, Lee J J, Jang H S, et al. Widely tunable emissions of colloidal ZnxCd1−x Se alloy quantum dots using a constant Zn/Cd precursor ratio. J Nanosci Nanotechnol, 2011, 11(1): 725–729

    Article  Google Scholar 

  21. Zhong X H, Han M Y, Dong Z L, et al. Composition-tunable ZnxCd1−x Se nanocrystals with high luminescence and stability. J Am Chem Soc, 2003, 125(28): 8589–8594

    Article  Google Scholar 

  22. Li W W, Liu J, Sun K, et al. Highly fluorescent water soluble CdxZn1−x Te alloyed quantum dots prepared in aqueous solution: one-step synthesis and the alloy effect of Zn. J Mater Chem, 2010, 20(11): 2133–2138

    Article  Google Scholar 

  23. Harrison M T, Kershaw S V, Burt M G, et al. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mat Sci Eng B-Solid, 2000, 69: 355–360

    Article  Google Scholar 

  24. Rogach A L, Harrison M T, Kershaw S V, et al. Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys Status Solidi B, 2001, 224(1): 153–158

    Article  Google Scholar 

  25. Smith A M, Nie S M. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J Am Chem Soc, 2011, 133(1): 24–26

    Article  Google Scholar 

  26. Taniguchi S, Green M, Lim T. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a “molecular welding” effect. J Am Chem Soc, 2011, 133(10): 3328–3331

    Article  Google Scholar 

  27. Allen P M, Bawendi M G. Ternary I-III-VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc, 2008, 130(29): 9240–9241

    Article  Google Scholar 

  28. Wei S H, Zhang S B, Zunger A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys, 2000, 87(3): 1304–1311

    Article  Google Scholar 

  29. Bailey R E, Nie S M. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J Am Chem Soc, 2003, 125(23): 7100–7106

    Article  Google Scholar 

  30. Gurusinghe N P, Hewa-Kasakarage N N, Zamkov M. Composition-tunable properties of CdSxTe1−x alloy nanocrystals. J Phys Chem C, 2008, 112(33): 12795–12800

    Article  Google Scholar 

  31. Ouyang J Y, Vincent M, Kingston D, et al. Noninjection, one-pot synthesis of photoluminescent colloidal homogeneously alloyed CdSeS quantum dots. J Phys Chem C, 2009, 113(13): 5193–5200

    Article  Google Scholar 

  32. Ellingson R J, Beard M C, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett, 2005, 5(5): 865–871

    Article  Google Scholar 

  33. Nozik A J. Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 2008, 457(1–3): 3–11

    Article  Google Scholar 

  34. Ma W, Luther J M, Zheng H M, et al. Photovoltaic devices employing ternary PbSxSe1−x nanocrystals. Nano Lett, 2009, 9(4): 1699–1703

    Article  Google Scholar 

  35. Smith D K, Luther J M, Semonin O E, et al. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity. ACS Nano, 2011, 5(1): 183–190

    Article  Google Scholar 

  36. Akhtar J, Afzaal M, Banski M, et al. Controlled synthesis of tuned bandgap nanodimensional alloys of PbSxSe1−x . J Am Chem Soc, 2011, 133(14): 5602–5609

    Article  Google Scholar 

  37. Deng Z T, Yan H, Liu Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J Am Chem Soc, 2009, 131(49): 17744–17745

    Article  Google Scholar 

  38. Pan D C, Weng D, Wang X L, et al. Alloyed semiconductor nanocrystals with broad tunable band gaps. Chem Commun, 2009, (28): 4221–4223

  39. Chiang M Y, Chang S H, Chen C Y, et al. Quaternary Culn(S1−x Sex)2 nanocrystals: facile heating-up synthesis, band gap tuning, and gram-scale production. J Phys Chem C, 2011, 115(5): 1592–1599

    Article  Google Scholar 

  40. Wang J, Long Y T, Zhang Y L, et al. Preparation of highly luminescent CdTe/CdS core/shell quantum dots. Chem Phys Chem, 2009, 10(4): 680–685

    Article  Google Scholar 

  41. Xie R G, Peng X G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc, 2009, 131(30): 10645–10651

    Article  Google Scholar 

  42. Cao Y W, Banin U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew Chem Int Ed, 1999, 38(24): 3692–3694

    Article  Google Scholar 

  43. Dethlefsen J R, Dossing A. Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor. Nano Lett, 2011, 11(5): 1964–1969

    Article  Google Scholar 

  44. Dong B H, Cao L X, Su G, et al. Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. Chem Commun, 2010, 46(39): 7331–7333

    Article  Google Scholar 

  45. Zhang H, Sun P, Liu C, et al. L-Cysteine capped CdTe-CdS coreshell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Luminescence, 2011, 26(2): 86–92

    Article  Google Scholar 

  46. Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc, 1990, 112(4): 1327–1332

    Article  Google Scholar 

  47. Haus J W, Zhou H S, Honma I, et al. Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys Rev B, 1993, 47(3): 1359–1365

    Article  Google Scholar 

  48. Schooss D, Mews A, Eychmüller A, et al. Quantum-dot quantum well CdS/HgS/CdS: theory and experiment. Phys Rev B, 1994, 49(24): 17072–17078

    Article  Google Scholar 

  49. Mews A, Eychmüller A, Giersig M, et al. Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS. J Phys Chem, 1994, 98(3): 934–941

    Article  Google Scholar 

  50. Braun M, Burda C, El-Sayed M A. Variation of the thickness and number of wells in the CdS/HgS/CdS quantum dot quantum well system. J Phys Chem A, 2001, 105(23): 5548–5551

    Article  Google Scholar 

  51. Battaglia D, Li J J, Wang Y J, et al. Colloidal two-dimensional systems: CdSe quantum shells and wells. Angew Chem Int Ed, 2003, 42(41): 5035–5039

    Article  Google Scholar 

  52. Zhong X H, Xie R G, Zhang Y, et al. High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals. Chem Mater, 2005, 17(16): 4038–4042

    Article  Google Scholar 

  53. Balet L P, Ivanov S A, Piryatinski A, et al. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett, 2004, 4(8): 1485–1488

    Article  Google Scholar 

  54. Kim S, Shim W, Seo H, et al. Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared. Chem Commun, 2009, 10: 1267–1269

    Article  Google Scholar 

  55. Kim S, Park J, Kim T, et al. Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. Small, 2011, 7(1): 70–73

    Article  Google Scholar 

  56. Cheng C T, Chen C Y, Lai C W, et al. Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. J Mater Chem, 2005, 15(33): 3409–3414

    Article  Google Scholar 

  57. Yu K, Zaman B, Romanova S, et al. Sequential synthesis of type II colloidal CdTe/CdSe core-shell nanocrystals. Small, 2005, 1(3): 332–338

    Article  Google Scholar 

  58. Kim S, Fisher B, Eisler H J, et al. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZinTe(core/shell) heterostructures. J Am Chem Soc, 2003, 125(38): 11466–11467

    Article  Google Scholar 

  59. Zhang W J, Chen G J, Wang J, et al. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg Chem, 2009, 48(20): 9723–9731

    Article  MathSciNet  Google Scholar 

  60. Zhang Y, Li Y, Yan X P. Aqueous layer-by-layer epitaxy of type-II CdTe/CdSe quantum dots with near-infrared fluorescence for bioimaging applications. Small, 2009, 5(2): 185–189

    Article  MathSciNet  Google Scholar 

  61. Ivanov S A, Piryatinski A, Nanda J, et al. Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J Am Chem Soc, 2007, 129(38): 11708–11719

    Article  Google Scholar 

  62. Blackman B, Battaglia D, Peng X G. Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater, 2008, 20(15): 4847–4853

    Article  Google Scholar 

  63. Taniguchi S, Green M, Rizvi S B, et al. The one-pot synthesis of core/shell/shell CdTe/CdSe/ZnSe quantum dots in aqueous media for in vivo deep tissue imaging. J Mater Chem, 2011, 21(9): 2877–2882

    Article  Google Scholar 

  64. Jian W P, Zhuang J Q, Zhang D W, et al. Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater Chem Phys, 2006, 99(2–3): 494–497

    Article  Google Scholar 

  65. Pradhan N, Peng X G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc, 2007, 129(11): 3339–3347

    Article  Google Scholar 

  66. Zeng R S, Rutherford M, Xie R G, et al. Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents. Chem Mater, 2010, 22(6): 2107–2113

    Article  Google Scholar 

  67. Bhargava R N, Gallagher D. Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett, 1994, 72(3): 416–418

    Article  Google Scholar 

  68. Wang Y S, Thomas P J, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J Phys Chem B, 2006, 110(43): 21412–21415

    Article  Google Scholar 

  69. Pradhan N, Goorskey D, Thessing J, et al. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc, 2005, 127(50): 17586–17587

    Article  Google Scholar 

  70. Wang X, Kong X G, Shan G Y, et al. Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals. J Phys Chem B, 2004, 108(48): 18408–18413

    Article  Google Scholar 

  71. Liu Y S, Luo W Q, Li R F, et al. Near-infrared luminescence of Nd3+ and Tm3+ ions doped ZnO nanocrystals. Opt Express, 2009, 17(12): 9748–9753

    Article  Google Scholar 

  72. Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal targeting in vivo. P Natl Acad Sci USA, 2002, 99(20): 12617–12621

    Article  Google Scholar 

  73. Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice. Bioconjugate Chem, 2004, 15(1): 79–86

    Article  Google Scholar 

  74. Li W, Feng L H, Zhang J Q, et al. Studies of key technologies for CdTe solar modules. Sci China Ser E-Tech Sci, 2008, 51(1): 33–39

    Article  MathSciNet  Google Scholar 

  75. He X L, Zhang J Q, Feng L H, et al. Admittance spectroscopy characterize graphite paste for back contact of CdTe thin film solar cells. Sci China Ser E-Tech Sci, 2010, 53(9): 2337–2341

    Article  Google Scholar 

  76. Huang C P, Li Y K, Chen T M. A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens Bioelectron, 2007, 22(8): 1835–1838

    Article  Google Scholar 

  77. Xia Y S, Zhu C Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta, 2008, 75(1): 215–221

    MathSciNet  Google Scholar 

  78. Liang G X, Liu H Y, Zhang J R, et al. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots. Talanta, 2010, 80(5): 2172–2176

    Article  MathSciNet  Google Scholar 

  79. Fu X, Huang K L, Liu S Q. Citrate-stabilized CdSe/CdS quantum dots as fluorescence probe for protein determination. J Cent South Univ T, 2010, 17(4): 720–725

    Article  Google Scholar 

  80. Yang S S, Ren C L, Zhang Z Y, et al. Aqueous synthesis of CdTe/ CdSe core/shell quantum dots as pH-sensitive fluorescence probe for the determination of ascorbic acid. J Fluoresc, 2011, 21(3): 1123–1129

    Article  Google Scholar 

  81. Wang G L, Dong Y M, Yang H X, et al. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots. Talanta, 2011, 83(3): 943–947

    Article  MathSciNet  Google Scholar 

  82. Wang X X, Lv Y, Hou X D. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta, 2011, 84(2): 382–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, D., Shen, Y., Feng, Y. et al. Recent progress in the fields of tuning the band gap of quantum dots. Sci. China Technol. Sci. 55, 903–912 (2012). https://doi.org/10.1007/s11431-011-4717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4717-1

Keywords

Navigation