Skip to main content
Log in

A Coulomb explosion theoretical model of femtosecond laser ablation materials

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, a kinetic theory of Vlasov equation is proposed to depict electron and ion’s nonequilibrium transport processes in a femtosecond time scale. A Coulomb explosion model of femtosecond laser ablation of materials is proposed and numerically simulated. The mechanism of surface Coulomb explosion induced by self-consisted electric field and the impact of laser parameters on the ablation of materials are quantitatively analyzed. The ablation depths calculated by the model are in good agreement with the experimental results. It is shown that, the intensity of self-consisted electric field generated on the dielectric material’s surface is much greater than that generated on the metal or the semiconductor material’s surface, and Coulomb explosion ablation is more easily to occur on the dielectric material’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miotello A, Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl Phys A, 1999; 69: 67–73

    Google Scholar 

  2. Kelly R, Miotello A. On the mechanisms of target modification by ion beams and laser pulses. Nucl Instrum Methods Phys Res Sect B, 1997; 122: 374–400

    Article  Google Scholar 

  3. Bulgakova N M, Bulgakov A V. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion. Appl Phys A, 2001; 73: 199–208

    Article  Google Scholar 

  4. Zhigelei L V. Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl Phys A, 2003; 76: 339–350

    Article  Google Scholar 

  5. Pakhomov A V, Thompson M S, Gregory D A. Laser-induced phase explosions in lead, tin and other elements: Microsecond regime and UV-emission. J Phys D, 2003; 36: 2067–2075

    Article  Google Scholar 

  6. Bulgakova N M, Stoian R, Rosenfeld A, et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion. Appl Phys A, 2005; 81: 345–356

    Article  Google Scholar 

  7. Herrmann R F W, Gerlach J, Campbell E E B. Molecular dynamics simulation of laser ablation of silicon. Nucl Instrum Methods Phys Res Sect B, 1997; 122: 401–404

    Article  Google Scholar 

  8. Herrmann R F W, Gerlach J, Campbell E E B. Ultrashort pulse laser ablation of silicon: An MD simulation study. Appl Phys A, 1998; 66: 35–42

    Article  Google Scholar 

  9. Stoian R, Ashkenasi D, Rosenfeld A, et al. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys Rev B, 2000; 62: 13167–13173

    Article  Google Scholar 

  10. Henyk M, Costache F, Reif J. Femtosecond laser ablation from sodium chloride and barium fluoride. Appl Surf Sci, 2002; 186: 381–384

    Article  Google Scholar 

  11. Stoian R, Rosenfeld A, Ashkenasi D. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys Rev Lett, 2002; 88: 097603

    Article  Google Scholar 

  12. Costache F, Reif J. Femtosecond laser induced Coulomb explosion from calcium fluoride. Thin Solid Films, 2004; 453–454: 334–339

    Article  Google Scholar 

  13. Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys Rev B, 1996; 53: 1749–1761

    Article  Google Scholar 

  14. Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys Rev Lett, 1995; 74: 2248–2251

    Article  Google Scholar 

  15. Gamaly E G, Rode A V, Luther-Davies B, et al. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas, 2002; 9: 949–958

    Article  Google Scholar 

  16. Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl Phys Lett, 1994; 64: 3071–3074

    Article  Google Scholar 

  17. Bejan D, Raseev G. Nonequilibrium electron distribution in metals. Phys Rev B, 1997; 55: 4250–4256

    Article  Google Scholar 

  18. Rethfeld B, Kaiser A, Vicanek M, et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys Rev B, 2002; 65: 214303–214314

    Article  Google Scholar 

  19. Peano F, Coppa G, Peinetti F, et al. Ergodic model for the expansion of spherical nanoplasmas. Phys Rev E, 2007; 75: 066403–066413

    Article  Google Scholar 

  20. Kovalev V F, Popov K I, Bychenkov V Y, et al. Rozmus laser triggered coulomb explosion of nanoscale symmetric targets. Plasma Physics, 2007; 14: 053103–053113

    Article  Google Scholar 

  21. Kim D, Ye M, Grigoropoulos C P. Pulsed laser-induced ablation of absorbing liquids and acoustic-transient generation. J Appl Phys, 2001; 89: 5183–5190

    Article  Google Scholar 

  22. Keldysh L V. Ionization in the field of a strong electromagnetic wave. Zh Eksp Teor Fiz, 1964; 47: 1515

    Google Scholar 

  23. Drits M E. Properties of Elements: Handbook. Moscow: Metallurgiya in Russian, 1985

    Google Scholar 

  24. Clark S P. Handbook of Physical Constants. New York: Geological Society of America, 1966

    Google Scholar 

  25. Apostolova T, Hahn Y. Modeling of laser-induced breakdown in dielectnics with subpicosecond pulses. J Appl Phys, 2000; 88: 1024–1034

    Article  Google Scholar 

  26. Jia T Q, Xu Z Z, Li X X, et al. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers. Appl Phys Lett, 2003; 82: 4382–4385

    Article  Google Scholar 

  27. Lugovskoy A V, Bray I. Ultrafast electron dynamics in metals under laser irradiation. Phys Rev B, 1999; 60: 3279–3288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHui Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Chen, H., Jiang, S. et al. A Coulomb explosion theoretical model of femtosecond laser ablation materials. Sci. China Technol. Sci. 55, 694–701 (2012). https://doi.org/10.1007/s11431-011-4702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4702-8

Keywords

Navigation