Skip to main content
Log in

Progress in mesoscopic modeling of microstructure evolution in steels

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale. In this paper, the recent development of mesoscopic modeling and its application to microstructure evolution in steels is reviewed. Firstly, some representative computational models are briefly introduced, e.g., the phase field model, the cellular automaton model and the Monte Carlo model. Then, the emphasis is put on the application of mesoscopic modeling of the complex features of microstructure evolution, including solidification, solid-state phase transformation, recrystallization and grain growth. Finally, some issues in the present mesoscopic modeling and its perspective are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling. Met Sci, 1979, 13: 187–194

    Article  Google Scholar 

  2. Senuma T. Present status of and future prospects for precipitation research in the steel industry. ISIJ Int, 2002, 42: 1–12

    Article  Google Scholar 

  3. Militzer M. Computer simulation of microstructure evolution in low carbon sheet steels. ISIJ Int, 2007, 47: 1–15

    Article  Google Scholar 

  4. Chen L Q. Phase-field models for microstructure evolution. Ann Rev Mater Res, 2002, 32: 113–140

    Article  Google Scholar 

  5. Rollett A D, Manohar P. The monte carlo method. Cont Scale Simul Eng Mat, 2004. 77–114

  6. Anderson M P, Srolovitz D J, Grest G S, et al. Computer simulation of grain growth-I. Kinetics. Acta Metall, 1984, 32: 783–791

    Google Scholar 

  7. Srolovitz D J, Grest G S, Anderson M P. Computer simulation of recrystallization-I. Homogeneous nucleation and growth. Acta Metall, 1986, 34: 1833–1845

    Article  Google Scholar 

  8. Rollett A D, Luton M J, Srolovitz D J. Microstructural simulation of dynamic recrystallization. Acta Metall Mater, 1992, 40: 43–55

    Article  Google Scholar 

  9. Tong M M, Li D Z, Li Y Y, et al. Modeling the austenite-ferrite isothermal transformation in an Fe-C binary system and experimental verification. Metall Mater Trans A, 2002, 33: 3111–3115

    Article  Google Scholar 

  10. Raabe D. Scaling Monte Carlo kinetics of the Potts model using rate theory. Acta Mater, 2000, 48: 1617–1628

    Article  Google Scholar 

  11. Marx V, Reher F R, Gottstein G. Simulation of primary recrystallization using a modified three-dimensional cellular automaton. Acta Mater, 1999, 47: 1219–1230

    Article  Google Scholar 

  12. Raabe D. Cellular automata in materials science with particular reference to recrystallization simulation. Ann Rev Mater Res, 2002, 32: 53–76

    Article  Google Scholar 

  13. Raabe D. Computational materials science: the simulation of materials microstructures and properties. Wiley-VCH Weinheim, 1998

  14. Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys. Phys Rev E, 1999, 60: 7186–7186

    Article  Google Scholar 

  15. Boettinger W J, Warren J A, Beckermann C, et al. Phase-field simulation of solidifcation. Ann Rev Mater Res, 2002, 32: 163–194

    Article  Google Scholar 

  16. Li J J, Wang J C, Yang G C. Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy. Chin Phys B, 2008, 17: 3516–3522

    Article  Google Scholar 

  17. Guo J, Li X, Su Y, et al. Phase-field simulation of structure evolution at high growth velocities during directional solidification of Ti55Al45 alloy. Intermetallics, 2005, 13: 275–279

    Article  Google Scholar 

  18. Zhang R, Jing T, Jie W, et al. Phase-field simulation of solidification in multicomponent alloys coupled with thermodynamic and diffusion mobility databases. Acta Mater, 2006, 54: 2235–2239

    Article  Google Scholar 

  19. Chen Y, Bogno A A, Billia B, et al. Phase-field Modeling of the Initial Transient in Directional Solidification of Al-4 wt% Cu Alloy. ISIJ Int, 2010, 50: 1895–1900

    Article  Google Scholar 

  20. Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. Phys Rev B, 1994, 50: 15752–15756

    Article  Google Scholar 

  21. Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems. Physica D, 1996, 94: 135–147

    Article  MATH  Google Scholar 

  22. Nestler B, Wheeler A A. A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures. Physica D, 2000, 138: 114–133

    Article  MathSciNet  MATH  Google Scholar 

  23. Hecht U, Gránásy L, Pusztai T, et al. Multiphase solidification in multicomponent alloys. Mater Sci Eng R, 2004, 46: 1–49

    Article  Google Scholar 

  24. Choudhury A, Nestler B, Telang A, et al. Growth morphologies in peritectic solidification of Fe-C: A phase-field study. Acta Mater, 2010, 58: 3815–3823

    Article  Google Scholar 

  25. Tiaden J. Phase field simulations of the peritectic solidification of Fe-C. J Cryst Growth, 1999, 198–199: 1275–1280

    Article  Google Scholar 

  26. Takatani H, Gandin C A, Rappaz M. EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow. Acta Mater, 2000, 48: 675–688

    Article  Google Scholar 

  27. Wang B, Zhang J Y, Li X M, et al. Simulation of solidification microstructure in twin-roll casting strip. Comput Mater Sci, 2010, 49: S135–S139

    Article  Google Scholar 

  28. Yamazaki M, Satoh J, Ohsasa K, et al. Numerical model of solidification structure formation in Fe-C alloy with peritectic transformation. ISIJ Int, 2008, 48: 362–367

    Article  Google Scholar 

  29. Michelic S C, Thuswaldner J M, Bernhard C. Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys. Acta Mater, 2010, 58: 2738–2751

    Article  Google Scholar 

  30. Ode M, Suzuki T, Kim S G, et al. Phase-field model for solidification of Fe-C alloys. Sci Technol Adv Mater, 2000, 1: 43–49

    Article  Google Scholar 

  31. Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals. Mater Sci Eng, 1984, 65: 57–63

    Article  Google Scholar 

  32. Lipton J, Kurz W, Trivedi R. Rapid dendrite growth in undercooled alloys. Acta Metall, 1987, 35: 957–964

    Article  Google Scholar 

  33. Zhang Y, Li D, Wang C, et al. Simulation of dendrite growth of Fe-C alloy using phase field method. Chin J of Mate Res, 2009, 23: 317–322

    MathSciNet  Google Scholar 

  34. Niu Y, Yan W, Feng X, et al. Phase-field simulation of Fe-C alloy in the isothermal solidification. Found Technol, 2008, 29: 244–249

    Google Scholar 

  35. Oguchi K, Suzuki T. Three-dimensional phase-field simulation of free dendrite growth of iron. ISIJ Int, 2007, 47: 277–281

    Article  Google Scholar 

  36. Oguchi K, Suzuki T. Free dendrite growth of Fe-0.5mass%C alloy three-dimensional phase-field simulation and LKT model. ISIJ Int, 2007, 47: 1432–1435

    Article  Google Scholar 

  37. Ode M, Suzuki T. Numerical simulation of initial microstructure evolution of Fe-C alloys using a phase-field model. ISIJ Int, 2002, 42: 368–374

    Article  Google Scholar 

  38. Suzuki T, Ode M, Kim S G, et al. Phase-field model of dendritic growth. J Cryst Growth, 2002, 237: 125–131

    Article  Google Scholar 

  39. Cha P R, Yeon D H, Yoon J K. A phase field model for isothermal solidification of multicomponent alloys. Acta Mater, 2001, 49: 3295–3307

    Article  Google Scholar 

  40. Cui H X, Zhang Y T, Sun Q, et al. Simulation of dendrite growth in Fe-C-Mn ternary alloy during isothermal solidification by phase field method. Res Stu Found Equip, 2008. 39–41

  41. Tiaden J, Grafe U. In: Proceedings of the International Conference on Solid-Solid Phase Transfor-mations: JIMIC-3, 1999

  42. Lee J S, Kim S G, Kim W T, et al. Numerical simulation of peritectic reaction using a multi-phase-field model. ISIJ Int, 1999, 39: 730–736

    Article  Google Scholar 

  43. Phelan D, Reid M, Dippenaar R. Kinetics of the peritectic phase transformation: In-situ measurements and phase field modeling. Metall Mater Trans A, 2006, 37A: 985–994

    Article  Google Scholar 

  44. Ode M, Kim S G, Kim W T, et al. Numerical simulation of peritectic reaction in Fe-C alloy using a multi-phase-field model. ISIJ Int, 2005, 45: 147–149

    Article  Google Scholar 

  45. Böttger B, Grafe U, Ma D. Mater Sci Technol, 2000, 16: 1425

    Article  Google Scholar 

  46. Nestler B, Choudhury A. Phase-field modeling of multi-component systems. Curr Opin Solid State Mater Sci, 2011, 15: 93–105

    Article  Google Scholar 

  47. Heike E, Ricardo S. Investigating heterogeneous nucleation in peritectic materials via the phase-field method. J Phys: Condens Matter, 2006, 18: 11121

    Article  Google Scholar 

  48. Kumar M, Sasikumar R, Nair P K. Competition between nucleation and early growth of ferrite from austenite-Studies using cellular automaton simulations. Acta Mater, 1998, 46: 6291–6303

    Article  Google Scholar 

  49. Kundu S, Dutta M, Ganguly S, et al. Prediction of phase transformation and microstructure in steel using cellular automaton technique. Scr Mater, 2004, 50: 891–895

    Article  Google Scholar 

  50. Zhang L, Zhang C B, Wang Y M, et al. Cellular automaton model to simulate nucleation and growth of ferrite grains for low-carbon steels. J Mater Res, 2002, 17: 2251–2259

    Article  Google Scholar 

  51. Zhang L, Zhang C B, Wang Y M, et al. A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling. Acta Mater, 2003, 51: 5519–5527

    Article  Google Scholar 

  52. Lan Y J, Li D Z, Huang C J, et al. A cellular automaton model for austenite to ferrite transformation in carbon steel under non-equilibrium interface conditions. Model Simul Mater Sci Eng, 2004, 12: 719–729

    Article  Google Scholar 

  53. Lan Y, Li D, Li Y. Modeling austenite-ferrite transformation in low carbon steel using the cellular automaton method. J Mater Res, 2004, 19: 2877–2886

    Article  Google Scholar 

  54. Lan Y J, Li D Z, Li Y Y. Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method. Acta Mater, 2004, 52: 1721–1729

    Article  Google Scholar 

  55. Lange W F, Enomoto M, Aaronson H I. The kinetics of ferrite nucleation at austenite grain-boundaries in Fe-C alloys. Metall Mater Trans A, 1988, 19: 427–440

    Article  Google Scholar 

  56. Tong M M, Li D Z, Li Y Y. A q-state Potts model-based Monte Carlo method used to model the isothermal austenite-ferrite transformation under non-equilibrium interface condition. Acta Mater, 2005, 53: 1485–1497

    Article  Google Scholar 

  57. Huang C J, Browne D J, McFadden S. A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Mater, 2006, 54: 11–21

    Article  Google Scholar 

  58. Huang C J, Browne D J. Phase-field model prediction of nucleation and coarsening during austenite/ferrite transformation in steels. Metall Mater Trans A, 2006, 37: 589–598

    Article  Google Scholar 

  59. Mecozzi M G, Sietsma J, Van der Zwaag S. Phase field modelling of the interfacial condition at the moving interphase during the gamma → alpha transformation in C-Mn steels. Comput Mater Sci, 2005, 34: 290–297

    Article  Google Scholar 

  60. Mecozzi M G, Sietsma J, Van der Zwaag S, et al. Analysis of the gamma →alpha transformation in a C-Mn steel by phase-field modeling. Metall Mater Trans A, 2005, 36A: 2327–2340

    Article  Google Scholar 

  61. Mecozzi M G, Sietsma J, Van der Zwaag S. Analysis of gamma → alpha transformation in a Nb micro-alloyed C-Mn steel by phase field modelling. Acta Mater, 2006, 54: 1431–1440

    Article  Google Scholar 

  62. Takahama Y, Sietsma J. Mobility analysis of the Austenite to ferrite transformation in nb microalloyed steel by phase field modelling. ISIJ Int, 2008, 48: 512–517

    Article  Google Scholar 

  63. Militzer M. Phase field modeling of microstructure evolution in steels. Curr Opin Solid State Mater Sci, 2011, 15: 106–115

    Article  Google Scholar 

  64. Militzer M, Mecozzi M G, Sietsma J, et al. Three-dimensional phase field modelling of the austenite-to-ferrite transformation. Acta Mater, 2006, 54: 3961–3972

    Article  Google Scholar 

  65. Mecozzi M G, Militzer M, Sietsma J, et al. The role of nucleation behavior in phase-field simulations of the austenite to ferrite transformation. Metall Mater Trans A, 2008, 39A: 1237–1247

    Article  Google Scholar 

  66. Thiessen R G, Sietsma J, Palmer T A, et al. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel. Acta Mater, 2007, 55: 601–614

    Article  Google Scholar 

  67. Santofimia M J, Takahama Y, Zhao L, et al. Analysis of the Quenching and Partitioning (Q&P) Process with Partial Austenitisation in a Low Carbon Steel by Phase Field Modelling. Warrendale: Minerals, Metals & Materials Soc, 2008

  68. Bos C, Mecozzi M, Sietsma J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput Mater Sci, 2010, 48: 692–699

    Article  Google Scholar 

  69. Tong M M, Ni J, Zhang Y T, et al. Monte Carlo-method simulation of the deformation-induced ferrite transformation in the Fe-C system. Metall Mater Trans A, 2004, 35A: 1565–1577

    Article  Google Scholar 

  70. Tong M M, Ni J, Zhang Y T, et al. Temporal oscillatory behavior in deformation induced ferrite transformation in an Fe-C binary system. Scr Mater, 2004, 50: 909–913

    Article  Google Scholar 

  71. Lan Y J, Xiao N M, Li D Z, et al. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Mater, 2005, 53: 991–1003

    Article  Google Scholar 

  72. Xiao N M, Tong M M, Lan Y J, et al. Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite-ferrite transformation. Acta Mater, 2006, 54: 1265–1278

    Article  Google Scholar 

  73. Suwanpinij P, Rudnizki J, Prahl U, et al. Investigation of the Effect of Deformation on gamma-alpha Phase Transformation Kinetics in Hot-Rolled Dual Phase Steel by Phase Field Approach. Steel Res Int, 2009, 80: 616–622

    Google Scholar 

  74. Zheng C W, Xiao N M, Hao L H, et al. Numerical simulation of dynamic strain-induced austenite-ferrite transformation in a low carbon steel. Acta Mater, 2009, 57: 2956–2968

    Article  Google Scholar 

  75. Li D Z, Xiao N M, Lan Y J, et al. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels. Acta Mater, 2007, 55: 6234–6249

    Article  Google Scholar 

  76. Offerman S, Van Dijk N, Sietsma J, et al. Grain nucleation and growth during phase transformations. Science, 2002, 298: 1003

    Article  Google Scholar 

  77. Loginova I, Agren J, Arnberg G. On the formation of Widmanstdtten ferrite in binary Fe-C-phase-field approach. Acta Mater, 2004, 52: 4055–4063

    Article  Google Scholar 

  78. Loginova I, Odqvist J, Amberg G, et al. The phase-field approach and solute drag modeling of the transition to massive gamma →alpha transformation in binary Fe-C alloys. Acta Mater, 2003, 51: 1327–1339

    Article  Google Scholar 

  79. Yamanaka A, Takaki T, Tomita Y. Coupled simulation of microstructural formation and deformation behavior of ferritepearlite steel by phase-field method and homogenization method. Mater Sci Eng A, 2008, 480: 244–252

    Article  Google Scholar 

  80. Nakajima K, Apel M, Steinbach I. The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multiphase field study. Acta Mater, 2006, 54: 3665–3672

    Article  Google Scholar 

  81. Steinbach I, Apel A. The influence of lattice strain on pearlite formation in Fe-C. Acta Mater, 2007, 55: 4817–4822

    Article  Google Scholar 

  82. Jacot A, Rappaz M. A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels. Acta Mater, 1997, 45: 575–585

    Article  Google Scholar 

  83. Jacot A, Rappaz M, Reed R C. Modelling of reaustenitization from the pearlite structure in steel. Acta Mater, 1998, 46: 3949–3962

    Article  Google Scholar 

  84. Yang B, Chuzhoy L, Johnson M. Modeling of reaustenitization of hypoeutectoid steels with cellular automaton method. Comput Mater Sci, 2007, 41: 186–194

    Article  Google Scholar 

  85. Yang B, Hattiangadi A, Li W, et al. Simulation of steel microstructure evolution during induction heating. Mater Sci Eng A, 2010, 527: 2978–2984

    Article  Google Scholar 

  86. Thiessen R G, Richardson I M, Sietsma J. Physically based modelling of phase transformations during welding of low-carbon steel. Mater Sci Eng A, 2006, 427: 223–231

    Article  Google Scholar 

  87. Savran V I. Austenite Formation in C-Mn Steel. Netherlands: The Delft University of Technology, 2009

    Google Scholar 

  88. Militzer M, Azizi Alizamini H. Phase field modelling of austenite formation in low carbon steels. Solid State Phenom, 2011, 172: 1050–1059

    Article  Google Scholar 

  89. Azizi-Alizamini H, Militzer M. Phase field modelling of austenite formation from ultrafine ferrite-carbide aggregates in Fe-C. Int J Mat Res, 2010, 101: 534–541

    Article  Google Scholar 

  90. Chang K N, Feng W M, Chen L Q. Effect of second-phase particle morphology on grain growth kinetics. Acta Mater, 2009, 57: 5229–5236

    Article  Google Scholar 

  91. Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater, 2001, 49: 3163–3175

    Article  Google Scholar 

  92. Fan D N, Geng C W, Chen L Q. Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model. Acta Mater, 1997, 45: 1115–1126

    Article  Google Scholar 

  93. Moelans N, Blanpain B, Wollants P. Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations. Acta Mater, 2007, 55: 2173–2182

    Article  Google Scholar 

  94. Takaki T, Hisakuni Y, Hirouchi T, et al. Multi-phase-field simulations for dynamic recrystallization. Comput Mater Sci, 2009, 45: 881–888

    Article  Google Scholar 

  95. Rollett A D, Srolovitz D J, Doherty R D, et al. Computer simulation of recrystallization in non-uniformly deformed metals. Acta Metall, 1989, 37: 627–639

    Article  Google Scholar 

  96. Choi S H, Barlat F, Chung J H. Modeling of textures and yield surfaces during recrystallization in IF steel sheets. Scr Mater, 2001, 45: 1155–1162

    Article  Google Scholar 

  97. Choi S H, Cho J H. Primary recrystallization modelling for interstitial free steels. Mater Sci Eng A, 2005, 405: 86–101

    Article  Google Scholar 

  98. Hayakawa Y, Szpunar J A. A new model of Goss texture development during secondary recrystallization of electrical steel. Acta Mater, 1997, 45: 4713–4720

    Article  Google Scholar 

  99. Montano-Zuniga I M, Sepulveda-Cervantes G, Lopez-Hirata V M, et al. Numerical simulation of recrystallization in BCC metals. Comput Mater Sci, 2010, 49: 512–517

    Article  Google Scholar 

  100. Okuda K, Rollett A D. Monte Carlo simulation of elongated recrystallized grains in steels. Comput Mater Sci, 2005, 34: 264–273

    Article  Google Scholar 

  101. Raabe D, Hantcherli L. 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Comput Mater Sci, 2005, 34: 299–313

    Article  Google Scholar 

  102. Zheng C W, Xiao N M, Li D Z, et al. Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Comput Mater Sci, 2009, 45: 568–575

    Article  Google Scholar 

  103. Yu X F, Chen S H, Wang L. Simulation of recrystallization in cold worked stainless steel and its effect on chromium depletion by cellular automaton. Comput Mater Sci, 2009, 46: 66–72

    Article  Google Scholar 

  104. Qian M, Guo Z X. Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel. Mater Sci Eng A, 2004, 365: 180–185

    Article  Google Scholar 

  105. Yazdipour N, Davies C H J, Hodgson P D. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput Mater Sci, 2008, 44: 566–576

    Article  Google Scholar 

  106. Chen F, Cui Z S, Liu J, et al. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Model Simul Mater Sci Eng, 2009, 17: 075015

    Article  Google Scholar 

  107. Chen F, Cui Z S, Liu J A, et al. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater Sci Eng A, 2010, 527: 5539–5549

    Article  Google Scholar 

  108. Jin Z Y, Cui Z S. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method. Mater Sci Eng A, 2010, 527: 3111–3119

    Article  Google Scholar 

  109. Thiessen R G, Richardson I M. A physically based model for microstructure development in a macroscopic heat-affected zone: Grain growth and recrystallization. Metall Mater Trans B, 2006, 37: 655–663

    Article  Google Scholar 

  110. Zheng C W, Xiao N M, Li D Z, et al. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling. Comput Mater Sci, 2008, 44: 507–514

    Article  Google Scholar 

  111. Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled steel strip: Part I-Description of models. Steel Res Int, 2004, 75: 462–467

    Google Scholar 

  112. Rajmohan N, Szpunar J A. Monte-Carlo simulation of Goss texture development in silicon steel in the presence of MnS particles. Mater Sci Eng A, 2000, 289: 99–108

    Article  Google Scholar 

  113. Maazi N, Penelle R. Introduction of preferential Zener drag effect in Monte Carlo simulation of abnormal Goss grain growth in the Fe-3%Si magnetic alloys. Mater Sci Eng A, 2009, 504: 135–140

    Article  Google Scholar 

  114. Ko K J, Park J T, Kim J K, et al. Morphological evidence that Goss abnormally growing grains grow by triple junction wetting during secondary recrystallization of Fe-3% Si steel. Scr Mater, 2008, 59: 764–767

    Article  Google Scholar 

  115. Ko K-J, Rollett A D, Hwang N-M. Abnormal grain growth of Goss grains in Fe-3% Si steel driven by sub-boundary-enhanced solid-state wetting: Analysis by Monte Carlo simulation. Acta Mater, 2010, 58: 4414–4423

    Article  Google Scholar 

  116. Ko K J, Cha P R, Srolovitz D, et al. Abnormal grain growth induced by sub-boundary-enhanced solid-state wetting: Analysis by phase-field model simulations. Acta Mater, 2009, 57: 838–845

    Article  Google Scholar 

  117. Kong F, Santhanakrishnan S, Lin D, et al. Modeling of temperature field and grain growth of a dual phase steel DP980 in direct diode laser heat treatment. J Mater Process Tech, 2009, 209: 5996–6003

    Article  Google Scholar 

  118. Zhang W, Elmer J, DebRoy T. Integrated modelling of thermal cycles, austenite formation, grain growth and decomposition in the heat affected zone of carbon steel. Sci Tech Weld Join, 2005, 10: 574–582

    Article  Google Scholar 

  119. Wei Y, Xu Y, Dong Z, et al. Three-dimensional Monte Carlo simulation of discontinuous grain growth in HAZ of stainless steel during GTAW process. J Mater Process Tech, 2009, 209: 1466–1470

    Article  Google Scholar 

  120. Lan Y, Li D, Li Y. A mesoscale cellular automaton model for curvature-driven grain growth. Metall Mater Trans B, 2006, 37: 119–129

    Article  Google Scholar 

  121. Schaffnit P, Stallybrass C, Konrad J, et al. Dual-scale phase-field simulation of grain growth upon reheating of a microalloyed line pipe steel. Int J Mat Res, 2010, 101: 549

    Article  Google Scholar 

  122. Toloui M, Militzer M. Phase field simulation of austenite grain growth in the HAZ of microalloyed linepipe steel. Int J Mat Res, 2010, 101: 542–548

    Article  Google Scholar 

  123. Godiksen R B, Trautt Z T, Upmanyu M, et al. Simulations of boundary migration during recrystallization using molecular dynamics. Acta Mater, 2007, 55: 6383–6391

    Article  Google Scholar 

  124. Janssens K G F, Olmsted D, Holm E A, et al. Computing the mobility of grain boundaries. Nat Mater, 2006, 5: 124–127

    Article  Google Scholar 

  125. Steinbach I, Apel M. Multi phase field model for solid state transformation with elastic strain. Physica D, 2006, 217: 153–160

    Article  MATH  Google Scholar 

  126. Artemev A, Jin Y, Khachaturyan A G. Three-dimensional phase field model of proper martensitic transformation. Acta Mater, 2001, 49: 1165–1177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DianZhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, N., Chen, Y., Li, D. et al. Progress in mesoscopic modeling of microstructure evolution in steels. Sci. China Technol. Sci. 55, 341–356 (2012). https://doi.org/10.1007/s11431-011-4699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4699-z

Keywords

Navigation