Skip to main content
Log in

Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In recent years, with the growing concerns on environmental protection and human health, new materials, such as lead-free piezoelectric materials, have received increasing attention. So far, three types of lead-free piezoelectric systems have been widely researched, i.e., perovskites, bismuth layer-structured ferroelectrics, and tungsten-bronze type ferroelectrics. This article presents a new type of environmental friendly piezoelectric material with simple structure, the transition-metal(TM)-doped ZnO. Through substituting Zn2+ site with small size ion, we obtained a series of TM-doped ZnO with giant piezoresponse, such as Zn0.975V0.025O of 170 pC/N, Zn0.94Cr0.06O of 120 pC/N, Zn0.913Mn0.087O of 86 pC/N and Zn0.988Fe0.012O of 127 pC/N. The tremendous piezoresponses are ascribed to the introduction of switchable spontaneous polarization and high permittivity in TM-doped ZnO. The microscopic origin of giant piezoresponse is also discussed. Substitution of TM ion with small ionic size for Zn2+ results in the easier rotation of noncollinear TM-O1 bonds along the c axis under the applied field, which produces large piezoelectric displacement and corresponding piezoresponse enhancement. Furthermore, it proposes a general rule to guide the design of new wurtzite semiconductors with enhanced piezoresponses. That is, TM-dopant with ionic size smaller than Zn2+ substitutes for Zn2+ site will increase the piezoresponse of ZnO significantly. Finally, we discuss the improved performances of some TM-doped ZnO based piezoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilgen O, Karami M A, Inman D J, et al. The actuation characterization of cantilevered unimorph beams with single crystal piezoelectric materials. Smart Mater Struct, 2011, 20: 0550245

    Google Scholar 

  2. Xie J, Mane X P, Green C W, et al. Performance of thin piezoelectric materials for pyroelectric energy harvesting. J Intel Mat Syst Str, 2010, 21(3): 243–249

    Google Scholar 

  3. Kholkin A L, Bdikin I K, Kiselev D A, et al. Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications. J Electroceram, 2007, 19(1): 83–96

    Google Scholar 

  4. Polla D L, Francis L F. Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Annu Rev Mater Res, 1998, 28: 563–597

    Google Scholar 

  5. Sahoo B, Jaleel V A, Panda P K. Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators. Mat Sci Eng B-Solid, 2006, 126(1): 80–85

    Google Scholar 

  6. Izyumskaya N, Alivov Y, Cho S J, et al. Processing, structure, properties, and applications of PZT thin films. Crit Rev Solid State, 2007, 32(3–4): 111–202

    Google Scholar 

  7. Aksel E, Jones J L. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors, 2010, 10(3): 1935–1954

    Google Scholar 

  8. Panda P K. Review: Environmental friendly lead-free piezoelectric materials. J Mater Sci, 2009, 44(19): 5049–5062

    Google Scholar 

  9. Li Y, Moon K S, Wong C P. Electronics without lead. Science, 2005, 308(5727): 1419–1420

    Google Scholar 

  10. Shimamura K, Takeda H, Kohno T, et al. Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J Cryst Growth, 1996, 163(4): 388–392

    Google Scholar 

  11. Li Y M, Chen W, Zhou J, et al. Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics. Mat Sci Eng B-Solid, 2004, 112(1): 5–9

    Google Scholar 

  12. Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc, 2005, 25(12): 2701–2706

    Google Scholar 

  13. Makiuchi Y, Aoyagi R, Hiruma Y, et al. (Bi0.5Na0.5)TiO3-(Bi0.5K0.5) TiO3-BaTiO3-based lead-free piezoelectric ceramics. Jpn J Appl Phys, 2005, 44(6B): 4350–4353

    Google Scholar 

  14. Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc, 2005, 25(12): 2693–2700

    Google Scholar 

  15. Dalcorso A, Posternak M, Resta R, et al. AB-Initio study of piezoelectricity and spontaneous polarization in ZnO. Phys Rev B, 1994, 50(15): 10715–10721

    Google Scholar 

  16. Molarius J, Kaitila J, Pensala T, et al. Piezoelectric ZnO films by r.f. sputtering. J Mater Sci-Mater El, 2003, 14(5–7): 431–435

    Google Scholar 

  17. Shibata T, Unno K, Makino E, et al. Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sensor Actuat A-Phys, 2002, 102(1–2): 106–113

    Google Scholar 

  18. Zhao M H, Wang Z L, Mao S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett, 2004, 4(4): 587–590

    Google Scholar 

  19. Desai A V, Haque M A. Mechanical properties of ZnO nanowires. Sens Actuator A-Phys, 2007, 134(1): 169–176

    Google Scholar 

  20. Chen J J, Gao Y, Zeng F, et al. Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films. Appl Surf Sci, 2004, 223(4): 318–329

    Google Scholar 

  21. Chen J J, Zeng F, Li D M, et al. Deposition of high-quality zinc oxide thin films on diamond substrates for high-frequency surface acoustic wave filter applications. Thin Solid Films, 2005, 485(1–2): 257–261

    Google Scholar 

  22. Chu S Y, Chen T Y, Water W. The investigation of preferred orientation growth of ZnO films on the PbTiO3-based ceramics and its application for SAW devices. J Cryst Growth, 2003, 257(3–4): 280–285

    Google Scholar 

  23. Chen T Y, Chu S Y. The piezoelectric and dielectric properties of Ca-additive Sm-modified PbTiO3 ceramics intended for surface acoustic wave devices. J Eur Ceram Soc, 2003, 23(12): 2171–2176

    Google Scholar 

  24. Chen T Y, Chu S Y, Cheng C K. Doping effects on the piezoelectric properties of low-temperature sintered PbTiO3-based ceramics for SAW applications. Integr Ferroelectr, 2003, 58: 1315–1324

    Google Scholar 

  25. Chen T Y, Chu S Y, Juang Y D. Effects of strontium on the surface acoustic wave properties of Sm-modified PbTiO3 ceramics. Ultrasonics, 2003, 41(2): 141–143

    Google Scholar 

  26. Chen T Y, Chu S Y, Wu S J, et al. Effects of strontium on the dielectric and piezoelectric properties of Sm-modified PbTiO3 ceramics. Ferroelectrics, 2003, 282: 37–47

    Google Scholar 

  27. Chu S Y, Chen T Y. Strontium doping effects on the characteristics of Sm-modified PbTiO3 ceramics. Sensor Actuat A-Phys, 2003, 107(1): 75–79

    Google Scholar 

  28. Ataev B M, Bagamadova A M, Djabrailov A M, et al. Highly conductive and transparent Ga-doped expitaxial ZnO films on sappire by CVD. Thin Solid Films, 1995, 260(1): 19–20

    Google Scholar 

  29. Myong S Y, Baik S J, Lee C H, et al. Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H(2)O) as new doping material. Jpn J Appl Phys, 1997, 36(8B): L1078–L1081

    Google Scholar 

  30. Pan F, Song C, Liu X J, et al. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mat Sci Eng R, 2008, 62(1): 1–35

    Google Scholar 

  31. Song C, Geng K W, Zeng F, et al. Giant magnetic moment in an anomalous ferromagnetic insulator: Co-doped ZnO. Phys Rev B, 2006, 73: 024405

    Google Scholar 

  32. Song C, Liu X J, Geng K W, et al. Transition from diluted magnetic insulator to semiconductor in Co-doped ZnO transparent oxide. J Appl Phys, 2007, 101: 103903

    Google Scholar 

  33. Song C, Pan S N, Liu X J, et al. Evidence of structural defect enhanced room-temperature ferromagnetism in Co-doped ZnO. J Phys-Condens Mat, 2007, 19: 176229

    Google Scholar 

  34. Song C, Zeng F, Geng K W, et al. Substrate-dependent magnetization in Co-doped ZnO insulating films. Phys Rev B, 2007, 76: 045215

    Google Scholar 

  35. Song C, Zeng F, Geng K W, et al. The magnetic properties of Co-doped ZnO diluted magnetic insulator films prepared by direct current reactive magnetron co-sputtering. J Magn Magn Mater, 2007, 309(1): 25–30

    Google Scholar 

  36. Luo J T, Zhu X Y, Fan B, et al. Microstructure and photoluminescence study of vanadium-doped ZnO films. J Phys D-Appl Phys, 2009, 42: 115109

    Google Scholar 

  37. Wang X B, Song C, Geng K W, et al. Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Appl Surf Sci, 2007, 253(16): 6905–6909

    Google Scholar 

  38. Wang X B, Song C, Geng K W, et al. Luminescence and Raman scattering properties of Ag-doped ZnO films. J Phys D-Appl Phys, 2006, 39(23): 4992–4996

    Google Scholar 

  39. Pan F, Liu X J, Yang Y C, et al. Multiferroic and piezoelectric behavior of transition-metal doped ZnO films. Mater Sci Forum, 2009, 620–622: 735–740

    Google Scholar 

  40. Yang Y C, Song C, Wang X H, et al. Giant piezoelectric d 33 coefficient in ferroelectric vanadium doped ZnO films. Appl Phys Lett, 2008, 92: 012907

    Google Scholar 

  41. Yang Y C, Song C, Wang X H, et al. Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn1−x CrxO films. J Appl Phys, 2008, 103: 074107

    Google Scholar 

  42. Luo J T, Yang Y C, Zhu X Y, et al. Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Phys Rev B, 2010, 82: 014116

    Google Scholar 

  43. Luo J T, Zhu X Y, Chen G, et al. Influence of the Mn concentration on the electromechanical response d 33 of Mn-doped ZnO films. Phys Status Solidi-Rapid Res Lett, 2010, 4(8–9): 209–211

    Google Scholar 

  44. Xu X H, Blythe H J, Ziese M, et al. Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature. New J Phys, 2006, 8: 135

    Google Scholar 

  45. Xu Q, Hartmann L, Schmidt H, et al. s-d exchange interaction induced magnetoresistance in magnetic ZnO. Phys Rev B, 2007, 76: 134417

    Google Scholar 

  46. Bdikin I K, Gracio J, Ayouchi R, et al. Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology, 2010, 21: 235703

    Google Scholar 

  47. Lee J W, Subramaniam N G, Lee J C, et al. Study of stable p-type conductivity in bismuth-doped ZnO films grown by pulsed-laser deposition. Europhys Lett, 2011, 95: 47002

    Google Scholar 

  48. Prasad S V, Nainaparampil J J, Zabinski J S. Tribological behavior of alumina doped zinc oxide films grown by pulsed laser deposition. J Vac Sci Technol A, 2002, 20(5): 1738–1743

    Google Scholar 

  49. Jeong S H, Park B N, Lee S B, et al. Study on the doping effect of Li-doped ZnO film. Thin Solid Films, 2008, 516(16): 5586–5589

    Google Scholar 

  50. Kawamura H, Yamada H, Takeuchi M, et al. Current-voltage characteristics of high-resistive ZnO thin films deposited by RF magnetron sputtering. Vacuum, 2004, 74(3–4): 567–570

    Google Scholar 

  51. Yang Y C, Song C, Zeng F, et al. V5+ ionic displacement induced ferroelectric behavior in V-doped ZnO films. Appl Phys Lett, 2007, 90: 242903

    Google Scholar 

  52. Ni H Q, Lu Y F, Liu Z Y, et al. Investigation of Li-doped ferroelectric and piezoelectric ZnO films by electric force microscopy and Raman spectroscopy. Appl Phys Lett, 2001, 79(6): 812–814

    Google Scholar 

  53. Nicolescu M, Anastasescu M, Preda S, et al. Investigation of microstructural properties of nitrogen doped ZnO thin films formed by magnetron sputtering on silicon substrate. J Optoelectron Adv M, 2010, 12(5): 1045–1051

    Google Scholar 

  54. Shao W D, Chen X F, Ren W, et al. V-doped ZnO thin films prepared by RF magnetron sputtering C-8551-2011. Ferroelectrics, 2010, 406: 10–15

    Google Scholar 

  55. Water W, Chu S Y, Juang Y D, et al. Li2CO3-doped ZnO films prepared by RF magnetron sputtering technique for acoustic device application. Mater Lett, 2002, 57(4): 998–1003

    Google Scholar 

  56. Liu H Y, Avrutin V, Izyumskaya N, et al. Highly conductive and optically transparent GZO films grown under metal-rich conditions by plasma assisted MBE. Phys Status Solidi-Rapid Res Lett, 2010, 4(3–4): 70–72

    Google Scholar 

  57. Seghier D, Gislason H P. Effects of cobalt doping on the electrical properties of MBE-grown ZnO. J Mater Sci-Mater El, 2011, 22(9): 1400–1403

    Google Scholar 

  58. Sun J W, Lu Y M, Liu Y C, et al. The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy. Solid State Commun, 2006, 140(7–8): 345–348

    Google Scholar 

  59. Wang X, Lu Y M, Shen D Z, et al. Electrical properties of N-doped ZnO grown on sapphire by P-MBE. Semicond Sci Tech, 2007, 22(2): 65–69

    Google Scholar 

  60. Zhang X A, Zhang J W, Zhang W F, et al. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy. Thin Solid Films, 2008, 516(10): 3305–3308

    Google Scholar 

  61. Han S K, Lee H S, Lim D S, et al. Effects of gallium doping on properties of a-plane ZnO films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. J Vac Sci Technol A, 2011, 29(3): 03A111

    Google Scholar 

  62. Zhang W Y, He D K, Liu Z Z, et al. Preparation of transparent conducting Al-doped ZnO thin films by single source chemical vapor deposition. Optoelectron Adv Mater-Rapid Commun, 2010, 4(11): 1651–1654

    Google Scholar 

  63. Chongsri K, Boonruang S, Techitdheera W, et al. N-doped MgZnO alloy thin film prepared by sol-gel method. Mater Lett, 2011, 65(12): 1842–1845

    Google Scholar 

  64. Kandjani A E, Tabriz M F, Moradi O M, et al. An investigation on linear optical properties of dilute Cr doped ZnO thin films synthesized via sol-gel process. J Alloy Compd, 2011, 509(30): 7854–7860

    Google Scholar 

  65. Ravichandran C, Srinivasan G, Lennon C, et al. Influence of post-deposition annealing on the structural, optical and electrical properties of Li and Mg co-doped ZnO thin films deposited by sol-gel technique. Superlattice Microst, 2011, 49(5): 527–536

    Google Scholar 

  66. Singh A, Kumar D, Khanna P K, et al. Anomalous behavior in ZnMgO thin films deposited by sol-gel method. Thin Solid Films, 2011, 519(17SI): 5826–5830

    Google Scholar 

  67. Tsay C Y, Wu C W, Lei C M, et al. Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol-gel process. Thin Solid Films, 2010, 519(5SI): 1516–1520

    Google Scholar 

  68. Ferblantier G, Mailly F, Al Asmar R, et al. Deposition of zinc oxide thin films for application in bulk acoustic wave resonator. Sensor Actuat A-Phys, 2005, 122(2): 184–188

    Google Scholar 

  69. Lee J B, Kim H J, Kim S G, et al. Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films, 2003, (1–2): 179–185

  70. Emanetoglua N W, Gorlab C, Liua Y, et al. Epitaxial ZnO piezoelectric thin films for saw filters. Mater Sci Semicond Process, 1999, 2(3): 247–252

    Google Scholar 

  71. Nakahata H, Fujii S, Higaki K, et al. Diamond-based surface acoustic wave devices. Semicond Sci Tech, 2003, 18S(3): S96–S104

    Google Scholar 

  72. Yoshino Y. Piezoelectric thin films and their applications for electronics. J Appl Phys, 2009, 105: 061623

    Google Scholar 

  73. Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98: 041301

    Google Scholar 

  74. Chen L X, Li C M, Yin W L, et al. Effect of deposition temperature and quality of free-standing diamond substrates on the properties of RF sputtering ZnO films. Diam Relat Mater, 2011, 20(4): 527–531

    Google Scholar 

  75. Chiang Y C Y, Sung C C, Ro R. Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures. Appl Phys Lett, 2010, 96: 154104

    Google Scholar 

  76. Phan D T, Suh H C, Chung G S. Surface acoustic wave characteristics of ZnO films grown on a polycrystalline 3C-SiC buffer layer. Microelectron Eng, 2011, 88(1): 105–108

    Google Scholar 

  77. Shih W C, Huang R C. Fabrication of high frequency ZnO thin film SAW devices on silicon substrate with a diamond-like carbon buffer layer using RF magnetron sputtering. Vacuum, 2008, 83(3): 675–678

    Google Scholar 

  78. Le Brizoual L, Sarry F, Elmazria O, et al. GHz frequency ZnO/Si SAW device. IEEE T Ultrason Ferr, 2008, 55(2): 442–450

    Google Scholar 

  79. Wei C L, Chen Y C, Cheng C C, et al. Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator. Thin Solid Films, 2010, 518(11): 3059–3062

    Google Scholar 

  80. Jung J P, Lee J B, Kim J S, et al. Fabrication and characterization of high frequency SAW device with IDT/ZnO/AlN/Si configuration: Role of AlN buffer. Thin Solid Films, 2004, 447: 605–609

    Google Scholar 

  81. Kim H. Surface acoustic wave properties in ZnO/AlN/Si structure. J Korean Phys Soc, 1998, 32(4): S1741–S1743

    Google Scholar 

  82. Krishnamoorthy S, Iliadis A A. Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid State Electron, 2008, 52(11): 1710–1716

    Google Scholar 

  83. Krishnamoorthy S, Iliadis A A. Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices. Solid State Electron, 2006, 50(6): 1113–1118

    Google Scholar 

  84. Krishnamoorthy S, Iliadis A A, Bei T, et al. An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor. Biosens Bioelectron, 2008, 24(2): 313–318

    Google Scholar 

  85. Chang R C, Chu S Y, Yeh P W, et al. An investigation of Love wave devices based on ZnO: Mg/LiNbO3 structure. Sensor Actuat B-Chem, 2008, 132(1): 312–318

    Google Scholar 

  86. Coey J, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett, 2004, 84(8): 1332–1334

    Google Scholar 

  87. Ramachandran S, Tiwari A, Narayan J. Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl Phys Lett, 2004, 84(25): 5255–5257

    Google Scholar 

  88. Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett, 2001, 79(7): 988–990

    Google Scholar 

  89. Chiou J W, Chang S Y, Huang W H, et al. The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy. Appl Surf Sci, 2011, 257(11): 4863–4866

    Google Scholar 

  90. Reddy K M, Benson R, Hays J, et al. On the room-temperature ferromagnetism of Zn1−x CrxO thin films deposited by reactive co-sputtering. Sol Energ Mat Sol C, 2007, 91(15–16): 1496–1502

    Google Scholar 

  91. Song Y Y, Quang P H, Lim K S, et al. Ferromagnetism above room temperature in Cr-doped AlN films. J Korean Phys Soc, 2006, 48(6): 1449–1453

    Google Scholar 

  92. Wang B Q, Iqbal J, Shan X D, et al. Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Mater Chem Phys, 2009, 113(1): 103–106

    Google Scholar 

  93. Bordage A, Brouder C, Balan E, et al. Electronic structure and local environment of substitutional V3+ in grossular garnet Ca3Al(SiO4)3: K-edge X-ray absorption spectroscopy and first-principles modeling. Am Mineral, 2010, 95(8–9): 1161–1171

    Google Scholar 

  94. Engemann C, Hormes J, Longen A, et al. An X-ray absorption near edge spectroscopy (XANES) study on organochromium complexes at the Cr K-edge. Chem Phys, 1998, 237(3): 471–481

    Google Scholar 

  95. Frommer J, Nachtegaal M, Czekaj I, et al. The Cr X-ray absorption K-edge structure of poorly crystalline Fe(III)-Cr(III)-oxyhydroxides. Am Mineral, 2010, 95(8–9): 1202–1213

    Google Scholar 

  96. Goering E, Bayer A, Gold S, et al. Direct correlation of Cr 3d orbital polarization and O K-edge X-ray magnetic circular dichroism of epitaxial CrO2 films. Europhys Lett, 2002, 58(6): 906–911

    Google Scholar 

  97. Miyano K E, Woicik J C, Devi P S, et al. Cr K edge x-ray absorption study of Cr dopants in Mg2SiO4 and Ca2GeO4. Appl Phys Lett, 1997, 71(9): 1168–1170

    Google Scholar 

  98. Ahlers S, Stone P R, Sircar N, et al. Comparison of the magnetic properties of GeMn thin films through Mn L-edge x-ray absorption. Appl Phys Lett, 2009, 95: 151911

    Google Scholar 

  99. Farrell S P, Fleet M E, Stekhin I E, et al. Evolution of local electronic structure in alabandite and niningerite solid solutions [(Mn,Fe)S, (Mg, Mn)S, (Mg,Fe)S] using sulfur K- and L-edge XANES spectroscopy. Am Mineral, 2002, 87(10): 1321–1332

    Google Scholar 

  100. Hocking R K, George S D, Gross Z, et al. Fe L- and K-edge XAS of low-spin ferric corrole: Bonding and reactivity relative to low-spin ferric porphyrin. Inorg Chem, 2009, 48(4): 1678–1688

    Google Scholar 

  101. Ikeno H, Tanaka I, Miyamae L, et al. First principles calculation of Fe L 2,L 3-edge X-ray absorption near edge structures of iron oxides. Mater Trans, 2004, 45(5): 1414–1418

    Google Scholar 

  102. Meneses C T, Vicentin F C, Sasaki J M, et al. Influence of Li on the K-edge of O and L 2,L 3 of the Mn XANES in LixMn2O4 thin films. J Electron Spectrosc, 2007, 156: 326–328

    Google Scholar 

  103. Saini N L, Wakisaka Y, Joseph B, et al. Electronic structure of FeSe1−x Tex studied by Fe L (2,3)-edge x-ray absorption spectroscopy. Phys Rev B, 2011, 83: 052502

    Google Scholar 

  104. Stojic N, Binggeli N, Altarelli M. Mn L 2,L 3 edge resonant x-ray scattering in manganites: Influence of the magnetic state. Phys Rev B, 2005, 72: 104108

    Google Scholar 

  105. Taguchi M, Altarellli M. Orbital ordering in LaMnO3: Cluster model calculation of resonant X-ray scattering and X-ray absorption at the Mn L 2,L 3 edge. Surf Rev Lett, 2002, 9(2): 1167–1171

    Google Scholar 

  106. Christman J A, Woolcott R R, Kingon A I, et al. Piezoelectric measurements with atomic force microscopy. Appl Phys Lett, 1998, 73(26): 3851–3853

    Google Scholar 

  107. Dubois M A, Muralt P. Measurement of the effective transverse piezoelectric coefficient e(31,f) of AlN and Pb(ZrxTi1−x )O3 thin films. Sensor Actuat A-Phys, 1999, 77(2): 106–112

    Google Scholar 

  108. Kuffer O, Maggio-Aprile I, Triscone J M, et al. Piezoelectric response of epitaxial Pb(Zr0.2Ti0.8)O3 films measured by scanning tunneling microscopy. Appl Phys Lett, 2000, 77(11): 1701–1703

    Google Scholar 

  109. Yao K, Tay F. Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer. IEEE T Ultrason Ferr, 2003, 50(2): 113–116

    Google Scholar 

  110. Kalinin S V, Bonnell D A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B, 2002, 65: 125408

    Google Scholar 

  111. Zou C W, Li M, Wang H J, et al. Ferroelectricity in Li-implanted ZnO thin films. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms, 2009, 267(7): 1067–1071

    Google Scholar 

  112. Hotta Y, Rokuta E, Tabata H, et al. Optimization of electronic-band alignments at ferroelectric (ZnxCd1−x )S/Si(100) interfaces. Appl Phys Lett, 2001, 78(21): 3283–3285

    Google Scholar 

  113. Islam Q T, Bunker B A. Ferroelectric transition in Pb1−x GexTe-extended X-ray absorption fine-structure investigation of the Ge and Pb sites. Phys Rev Lett, 1987, 59(23): 2701–2704

    Google Scholar 

  114. Onodera A, Tamaki N, Jin K, et al. Ferroelectric properties in piezoelectric semiconductor Zn1−x MxO (M=Li, Mg). Jpn J Appl Phys, 1997, 36(9B): 6008–6011

    Google Scholar 

  115. Weil R, Nkum R, Muranevich E, et al. Ferroelectricity in Zinc-Cadmium telluride. Phys Rev Lett, 1989, 62(23): 2744–2746

    Google Scholar 

  116. Shulman R G, Yafet Y, Eisenberger P, et al. Observation and interpertation of X-ray absorption edges in Fe compounds and proteins. P Natl Acad Sci USA, 1976, 73(5): 1384–1388

    Google Scholar 

  117. Bair R A, Goddard W A. AB-initio studies of X-ray absorption-edge in copper-complexes. Phys Rev B, 1980, 22(6): 2767–2776

    Google Scholar 

  118. Wong J, Lytle F W, Messmer R P, et al. K-edge absorption-spectra of selected vanadium compounds. Phys Rev B, 1984, 30(10): 5596–5610

    Google Scholar 

  119. Purans J, Balzarotti A, Motta N, et al. EXAFS and XANES studies of local order in oxide glasses-manganese impurity defects and vanadium low-symmertry complexes. J Non-Cryst Solids, 1987, 94(3): 336–344

    Google Scholar 

  120. Kholkin A L, Akdogan E K, Safari A, et al. Characterization of the effective electrostriction coefficients in ferroelectric thin films. J Appl Phys, 2001, 89(12): 8066–8073

    Google Scholar 

  121. Dhananjay, Nagaraju J, Krupanidhi S B. Effect of Li substitution on dielectric and ferroelectric properties of ZnO thin films grown by pulsed-laser ablation. J Appl Phys, 2006, 99: 0341053

    Google Scholar 

  122. Karanth D, Fu H X. Large electromechanical response in ZnO and its microscopic origin. Phys Rev B, 2005, 72: 064116

    Google Scholar 

  123. Chen Y Q, Zheng X J, Feng X. The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning. Nanotechnology, 2010, 21: 055708

    Google Scholar 

  124. Maetaki A, Yamamoto M, Matsumoto H, et al. The preparation of ultra-thin chromium-vanadium oxides on Cu(100) studied by XPS and LEED. Surf Sci, 2000, 445(1): 80–88

    Google Scholar 

  125. Luo J T, Fan B, Zeng F, et al. Influence of Cr-doping on microstructure and piezoelectric response of AlN films. J Phys-D Appl Phys, 2009, 42: 2354069

    Google Scholar 

  126. Ankudinov A L, Ravel B, Rehr J J, et al. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B, 1998, 58(12): 7565–7576

    Google Scholar 

  127. Garg K B, Saini N L, Sekhar B R, et al. Doped holes and Mn valence in manganites: A polarized soft x-ray absorption study of LaMnO3 and quasi-2D manganite systems. J Phys-Condens Mat, 2008, 20: 055215

    Google Scholar 

  128. Bondino F, Garg K B, Magnano E, et al. Electronic structure of Mn-doped ZnO by x-ray emission and absorption spectroscopy. J Phys-Condens Mat, 2008, 20: 275205

    Google Scholar 

  129. Thakur P, Chae K H, Kim J Y, et al. X-ray absorption and magnetic circular dichroism characterizations of Mn doped ZnO. Appl Phys Lett, 2007, 91: 162503

    Google Scholar 

  130. Kumar S, Kim Y J, Koo B H, et al. Structural and magnetic properties of chemically synthesized Fe doped ZnO. J Appl Phys, 2009, 105(7): 07C520

    Google Scholar 

  131. Wang L M, Liao J W, Peng Z A, et al. Doping effects on the characteristics of Fe:ZnO films: Valence transition and hopping transport. J Electrochem Soc, 2009, 156(2): H138–H142

    Google Scholar 

  132. Wu P, Saraf G, Lu Y, et al. Ferromagnetism in Fe-implanted a-plane ZnO films. Appl Phys Lett, 2006, 89: 012508

    Google Scholar 

  133. Kang J S, Lee H J, Kim G, et al. Electronic structure of the cubic perovskite SrMn1−x FexO3 investigated by x-ray spectroscopies. Phys Rev B, 2008, 78: 054434

    Google Scholar 

  134. Regan T J, Ohldag H, Stamm C, et al. Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy. Phys Rev B, 2001, 64(21): 214422

    Google Scholar 

  135. Choi B J, Choi S, Eom T, et al. Influence of substrates on the nucleation and growth behaviors of Ge2Sb2Te5 Films by combined plasma-enhanced atomic layer and Chemical Vapor Deposition. Chem Mater, 2009, 21(12): 2386–2396

    Google Scholar 

  136. Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254(8): 2441–2449

    Google Scholar 

  137. Gupta A, Kumar A, Waghmare U V, et al. Origin of activation of lattice oxygen and synergistic interaction in bimetal-ionic Ce0.89Fe0.1Pd0.01O(2-delta) catalyst. Chem Mater, 2009, 21(20): 4880–4891

    Google Scholar 

  138. Mills P, Sullivan J L. A study of the core level electrons in Fe and its 3 oxides by means of X-ray photoelectron-spectroscopy. J Phys D-Appl Phys, 1983, 16(5): 723–732

    Google Scholar 

  139. Assouar M B, Elmazria O, Rioboo R J, et al. Modelling of SAW filter based on ZnO/diamond/Si layered structure including velocity dispersion. Appl Surf Sci, 2000, 164: 200–204

    Google Scholar 

  140. Zhu J, Chen Y, Saraf G, et al. Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on r-Al2O3. Appl Phys Lett, 2006, 89: 103513

    Google Scholar 

  141. Hachigo A, Nakahata H, Higaki K, et al. Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering. Appl Phys Lett, 1994, 65(20): 2556–2558

    Google Scholar 

  142. Makkonen T, Plessky V P, Steichen W, et al. Surface-acoustic-wave devices for the 2.5–5 GHz frequency range based on longitudinal leaky waves. Appl Phys Lett, 2003, 82(19): 3351–3353

    Google Scholar 

  143. Luo J T, Zeng F, Pan F, et al. Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters. Appl Surf Sci, 2010, 256(10): 3081–3085

    Google Scholar 

  144. Emanetoglu N W, Muthukumar S, Wittstruck R H, et al. MgxZn1−x O: A new piezoelectric material. IEEE T Ultrason Ferr, 2003, 50(5): 537–543

    Google Scholar 

  145. Wittstruck R H, Tong X J, Emanetoglu N W, et al. Characteristics of MgxZn1−x O thin film bulk acoustic wave devices. IEEE T Ultrason Ferr, 2003, 50(10): 1272–1278

    Google Scholar 

  146. Chen Y, Saraf G, Lu Y C, et al. a-plane MgxZn1−x O films deposited on r-sapphire and its surface acoustic wave characteristics. J Vac Sci Technol A, 2007, 25(4): 857–861

    Google Scholar 

  147. Water W, Yan Y S, Meen T H. Effect of magnesium doping on the structural and piezoelectric properties of sputtered ZnO thin film. Sensor Actuat A-Phys, 2008, 144(1): 105–108

    Google Scholar 

  148. Chang R C, Chu S Y, Yeh P W, et al. The influence of Mg doped ZnO thin films on the properties of love wave sensors. Sensor Actuat B-Chem, 2008, 132(1): 290–295

    Google Scholar 

  149. Ieki H, Kadota M. ZnO thin films for high frequency SAW devices. IEEE Ultrasonics Syposium, 1999: 281–289

  150. Lee J B, Lee H J, Seo S H, et al. Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films, 2001, 398: 641–646

    Google Scholar 

  151. Water W, Yang Y S. The influence of calcium doped ZnO films on love wave sensor characteristics. Sensor Actuat A-Phys, 2006, 127(2): 360–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Pan or JingTing Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, F., Luo, J., Yang, Y. et al. Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO. Sci. China Technol. Sci. 55, 421–436 (2012). https://doi.org/10.1007/s11431-011-4682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4682-8

Keywords

Navigation