Skip to main content
Log in

Large magnetocaloric effect in metamagnetic HoPdAl

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Magnetic properties and magnetocaloric effects (MCEs) of the HoPdAl compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Néel temperature T N =12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state is observed below T N . For the hexagonal HoPdAl, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around T N . The maximal value of magnetic entropy change (ΔS M ) is −20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0–5 T. For the orthorhombic HoPdAl, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ΔS M value is still −13.7 J/kg K around T N for a field change of 0–5 T. The large reversible ΔS M and considerable RC suggest that HoPdAl may be an appropriate candidate for magnetic refrigerant in a low temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tishin A M, Spichkin Y I. The Magnetocaloric Effect and its Applications. Coey J M D, Tilley D R, Vij D R, eds. Bristol: Institute of Physics Publishing, 2003

    Chapter  Google Scholar 

  2. Gschneidner Jr K A, Pecharsky V K, Tsokol A O. Recent developments in magnetocaloric materials. Rep Prog Phys, 2005, 68: 1479–1539

    Article  Google Scholar 

  3. Brück E. Handbook of Magnetic Materials. Buschow K H J, ed. Amsterdam: Elsevier B.V., 2008, Vol. 17. 235

    Google Scholar 

  4. Shen B G, Sun J R, Hu F X, et al. Recent progress in exploring magnetocaloric materials. Adv Mater, 2009, 21: 4545–4564

    Article  Google Scholar 

  5. Pecharsky V K, Gschneidner Jr K A. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys Rev Lett, 1997, 78: 4494–4497

    Article  Google Scholar 

  6. Hu F X, Shen B G, Sun J R, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett, 2001, 78: 3675–3677

    Article  Google Scholar 

  7. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1−x Sbx. Appl Phys Lett, 2001, 79: 3302–3304

    Article  Google Scholar 

  8. Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature (London), 2002, 415: 150–152

    Article  Google Scholar 

  9. Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic NiMnSn alloys. Nat Mater, 2005, 4: 450–454

    Article  Google Scholar 

  10. Zhang X X, Wang F W, Wen G H. Magnetic entropy change in RCoAl (R = Gd, Tb, Dy, and Ho) compounds: Candidate materials for providing magnetic refrigeration in the temperature range 10 K to 100 K. J Phys-Condens Matter, 2001, 13: L747–L752

    Article  Google Scholar 

  11. Singh N K, Suresh K G, Nirmala R, et al. Effect of magnetic polarons on the magnetic, magnetocaloric, and magnetoresistance properties of the intermetallic compound HoNiAl. J Appl Phys, 2007, 101: 093904

    Article  Google Scholar 

  12. Dong Q Y, Shen B G, Chen J, et al. Large reversible magnetocaloric effect in DyCuAl compound. J Appl Phys, 2009, 105: 113902

    Article  Google Scholar 

  13. Chen J, Shen B G, Dong Q Y, et al. Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound. Appl Phys Lett, 2010, 96: 152501

    Article  Google Scholar 

  14. Shen J, Zhao J L, Hu F X, et al. Order of magnetic transition and large magnetocaloric effect in Er3Co. Chin Phys B, 2010, 19: 047502

    Article  Google Scholar 

  15. von Ranke P J, Pecharsky V K, Gschneidner Jr K A. Influence of the crystalline electrical field on the magnetocaloric effect of DyAl2, ErAl2, and DyNi2. Phys Rev B, 1998, 58: 12110–12116

    Article  Google Scholar 

  16. Chen J, Shen B G, Dong Q Y, et al. Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound. Appl Phys Lett, 2009, 95: 132504

    Article  Google Scholar 

  17. Hulliger F. On the rare-earth palladium aluminides LnPdA1. J Alloys Compd, 1995, 218: 44–46

    Article  Google Scholar 

  18. Talik E, Skutecka M, Kusz J, et al. Magnetic properties of GdPdAl single crystals. J Alloys Compd, 2001, 325: 42–49

    Article  Google Scholar 

  19. Dönni A, Kitazawa H, Fischer P, et al. Evidence for an isostructural phase transition in the metastable high-temperature modification of TbPdAl. J Alloys Compd, 1999, 289: 11–17

    Article  Google Scholar 

  20. Talik E, Skutecka M, Kusz J, et al. Magnetic properties of DyPdAl. J Magn Magn Mater, 2004, 272–276: 767–768

    Article  Google Scholar 

  21. Talik E, Skutecka M, Kusz J, et al. Electronic structure and magnetic prop-erties of a HoPdAl single crystal. J Alloys Compd, 2003, 359: 103–108

    Article  Google Scholar 

  22. Kusz J, Böhm H, Talik E, et al. Isostructural phase transition in the GdPdAl single crystals. J Alloys Compd, 2003, 348: 65–71

    Article  Google Scholar 

  23. Prchal J, Javorský P, Rusz J, et al. Structural discontinuity in the hexagonal RTAl compounds: Experiments and density-functional theory calculations. Phys Rev B, 2008, 77: 134106

    Article  Google Scholar 

  24. Javorský P, Prokleška J, Isnard O, et al. Crystal and magnetic structures in the Tb(Pd, Ni)Al series. J Phys-Condens Mater, 2008, 20: 104223

    Article  Google Scholar 

  25. Dönni A, Kitazawa H, Keller L, et al. Determination of frustrated and non-frustrated magnetic structures of hexagonal and orthorhombic TbPdAl. J Alloys Compd, 2009, 477: 16–22

    Article  Google Scholar 

  26. Shen J, Zheng X Q, Zhang H, et al. Metamagnetic transition and magnetocaloric effect in antiferromagnetic TbPdAl compound. J Magn Magn Mater, 2011, 323: 2949–2952

    Article  Google Scholar 

  27. Klimczak M, Talik E. Magnetocaloric effect of GdTX (T = Mn, Fe, Ni, Pd, X=Al, In) and GdFe6Al6 ternary compounds. J Phys-Conf Ser, 2010, 200: 092009

    Article  Google Scholar 

  28. Hu W J, Du J, Li B, et al. Giant magnetocaloric effect in the Ising antiferromagnet DySb. Appl Phys Lett, 2008, 92: 192505

    Article  Google Scholar 

  29. Arora P, Tiwari P, Sathe V G, et al. Magnetocaloric effect in DyCu2. J Magn Magn Mater, 2009, 321: 3278–3284

    Article  Google Scholar 

  30. Banerjee S K. On a generalised approach to first and second order magnetic transitions. Phys Lett, 1964, 12: 16

    Google Scholar 

  31. von Ranke P J, Mota M A, Grangeia D F, et al. Magnetocaloric effect in the RNi5 (R=Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys Rev B, 1998, 70: 134428

    Article  Google Scholar 

  32. Samanta T, Das I. Negligible influence of domain walls on the magnetocaloric effect in GdPt2. Phys Rev B, 2006, 74: 132405

    Article  Google Scholar 

  33. Samanta T, Das I, Banerjee S. Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound. Appl Phys Lett, 2007, 91: 152506

    Article  Google Scholar 

  34. Gschneidner Jr K A, Pecharsky V K, Pecharsky A O, et al. Recent developments in magnetic refrigeration. Mater Sci Forum, 1999, 315: 69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoGen Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Shen, B. Large magnetocaloric effect in metamagnetic HoPdAl. Sci. China Technol. Sci. 55, 445–450 (2012). https://doi.org/10.1007/s11431-011-4681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4681-9

Keywords

Navigation