Skip to main content
Log in

Ultra-fast densification of CNTs reinforced alumina based on combustion reaction and quick pressing

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An ultra-fast densification method based on high heating rate from the combustion reaction for producing carbon nanotubes (CNTs) reinforced alumina ceramics is reported. The heat generated by combustion reaction is adopted to act as a high temperature source to the sample, which results in a heating rate of 1660°C/min of the sample. Then a great mechanical pressure is applied to the sample when the sample gets the expected temperature. The densification process is finished in several minutes. The results indicate that the densification method is beneficial to protect the CNTs from destruction and creates good interfacial combination between the nanotubes and the matrix. With the addition of 1 wt% CNTs, the fracture toughness of the ceramics prepared increases about 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S, Helical. Microtubes of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  2. Krishnan A, Dujardin E, Ebbesen T W, et al. Young’s modulus of single-walled nanotubes. Phys Rev B, 1998, 58: 14013–14019

    Article  Google Scholar 

  3. Siegel R W, Chang S K, Ash B J, et al. Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Mater, 2001, 44: 2061–2064

    Article  Google Scholar 

  4. Ramasubramaniam R, Chen J. Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett, 2003, 83: 2928–2930

    Article  Google Scholar 

  5. Laurent C, Peigney A, Dumortier O, et al. Carbon nanotubes-Fe-alumina nanocomposites Part II: Microstructure and mechanical properties of the hot-Pressed composites. J Eur Ceram Soc, 1998, 18: 2005–2013

    Article  Google Scholar 

  6. Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int, 2000, 26: 677–683

    Article  Google Scholar 

  7. Flahaut E, Peigney A, Laurent C, et al. Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties. Acta Mater, 2000, 48: 3803–3812

    Article  Google Scholar 

  8. Zhan G D, Kuntz J D, Wan J, et al. Single-wall carbon nanotubes as attractive toughening agents in aluminabased nanocomposites. Nat Mater, 2003, 2: 38–42

    Article  Google Scholar 

  9. Jiang T, Thomson K, Kuntz J D, et al. Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scripta Mater, 2007, 56: 959–962

    Article  Google Scholar 

  10. Cha S I, Kim K T, Lee K H, et al. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Mater, 2005, 53: 793–797

    Article  Google Scholar 

  11. Peigney A. Composite materials: Tougher ceramics with nanotubes. Nat Mater, 2003, 2: 15–16

    Article  Google Scholar 

  12. Sheldon B W, Curtin W A. Nanoceramic composites: Tough to test. Nat Mater, 2004, 3: 505–506

    Article  Google Scholar 

  13. Yamamoto G, Sato Y, Takahashi T, et al. Single-walled carbon nanotube-derived novel structural material. J Mater Res, 2006, 21: 1537–1542

    Article  Google Scholar 

  14. Meng F C, Fu Z Y, Zhang J Y, et al. Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate. J Am Ceram Soc, 2007, 90: 1262–1264

    Article  Google Scholar 

  15. Meng F C, Fu Z Y, Zhang J Y, et al. Study on the structure and properties of fine-grained alumina fast sintered with high heating rate. Mater Res Bull, 2008, 43: 3521–3528

    Article  Google Scholar 

  16. Chaim R, Margulis M. Densification maps for spark plasma sintering of nanocrystalline MgO ceramics. Mater Sci Eng A, 2005, 407: 180–187

    Article  Google Scholar 

  17. Cannow R M, Rhodes W H, Heuer A H. Plastic deformation of fine-grained alumina (A12O3): I, interface-controlled diffusional creep. J Am Ceram Soc, 1980, 63: 46–53

    Article  Google Scholar 

  18. Yamamoto G, Omori M, Hashida T, et al. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnol, 2008, 19: 315708

    Article  Google Scholar 

  19. Fu Z Y, Wang W M, Wang H, et al. Fabrication of cermets by SHS-QP method. Int J Self-Propag High-tempSynth, 1993, 2: 307–313

    Google Scholar 

  20. Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement. J Am Ceram Soc, 1981, 64: 533–538

    Article  Google Scholar 

  21. Balani K, Bakshi S R, Chen Y, et al. Role of powder treatment and carbon nanotube dispersion in the fracture toughening of plasma-sprayed aluminum oxide-carbon nanotube nanocomposite. J Nanosci Nanotechnol, 2007, 7: 3553–3562

    Article  Google Scholar 

  22. Wang X T, Padture N P, Tanaka H. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater, 2004, 3: 539–544

    Article  Google Scholar 

  23. Gong J H, Peng Z J, Miao H Z. Analysis of the nanoindentation load-displacement curves measured on high-purity fine-grained alumina. J Eur Ceram Soc, 2005, 25: 649–654

    Article  Google Scholar 

  24. Franco A, Roberts S G, Warren P D. Fracture toughness, surface flaw sizes and flaw densities in Al2O3. Acta Mater, 1997, 45: 1009–1015

    Article  Google Scholar 

  25. Hennrich F, Krupke R, Lebedkin S, et al. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B, 2005, 109: 10567–10573

    Article  Google Scholar 

  26. Graupner R. Raman spectroscopy of covalently functionalized single-wall carbon nanotubes. J Raman Spectrosc, 2007, 38: 673–683

    Article  Google Scholar 

  27. Son H, Samsonidze G G, Kong J, et al. Strain and friction induced by van der waals interaction in individual single walled carbon nanotubes. Appl Phys Lett, 2007, 90: 253113

    Article  Google Scholar 

  28. Padture N P, Curtin W A. Comment on “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based composite”. Scripta Mater, 2008, 58: 989–990

    Article  Google Scholar 

  29. Jiang D T, Mukherjee A K. Response to comment on “Effect of sintering temperature on single-wall carbon nanotube toughened alumina-based nanocomposite”. Scripta Mater, 2008, 58: 991–993

    Article  Google Scholar 

  30. Sato Y, Ootsubo M, Yamamoto G. Super-robust, lightweight, conducting carbon nanotube blocks cross-linked by de-fluorination. ACS Nano, 2008, 2: 348–356

    Article  Google Scholar 

  31. Wei T, Fan Z J, Luo G H, et al. The effect of carbon nanotubes microstructures on reinforcing properties of SWNTs/alumina composite. Mater Res Bull, 2008, 43: 2806–2809

    Article  Google Scholar 

  32. Sun J, Gao L, Jin X H. Reinforcement of alumina matrix with multi-walled carbon nanotubes. Ceram Int, 2005, 31: 893–896

    Article  Google Scholar 

  33. Balani K, Agarwal A. Wetting of carbon nanotubes by aluminum oxide. Nanotechnol, 2008, 19: 165701

    Article  Google Scholar 

  34. Estili M, Kawasaki A. An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scripta Mater, 2008, 58: 906–909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengYi Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Huang, L., Zhang, J. et al. Ultra-fast densification of CNTs reinforced alumina based on combustion reaction and quick pressing. Sci. China Technol. Sci. 55, 484–489 (2012). https://doi.org/10.1007/s11431-011-4674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4674-8

Keywords

Navigation