Skip to main content
Log in

Study on heat transfer enhancement of discontinuous short wave finned flat tube

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The typical configuration adopted by air-cooled condenser (ACC) in coal-fired power generating unit is the wave finned flat tube. The development of boundary layer between wave fins along long axis of flat tube can suppress the air-side heat transfer enhancement to a great extent. It has been proved that the serrated fins can enhance heat transfer obviously by breaking the development of boundary layer periodically. In the present study, the discontinuous short wave fin was introduced to the flat tube to enhance the air-side heat transfer of ACC. Two different types of arrangements, i.e. staggered and in-line for discontinuous short wave fins on the flat tube, were designed. By numerical simulation, the heat transfer and flow performances of short wave fins were studied under different arrangements (in-line, staggered), and the influences on heat transfer and flow characteristics of rows of short wave fin and interrupted distance between discontinuous short wave fins were revealed numerically. The results indicated that, compared with the original continuous wave fin, the discontinuous short wave fin effectively improved the air-side heat transfer of flat tube under the air flow velocities in the practical application of engineering. Moreover, the increment of pressure loss of air-side flow was restricted for the discontinuous short wave fins because of the reduction of contact areas between the air flow and fin surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang L J, Du X Z, Yang Y P. Measures against the adverse impact of natural wind on air-cooled condensers in power plant. Sci China Tech Sci, 2010, 53(5): 1320–1327

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang L J, Zhou J, Du X Z, et al. Numerical analysis of flow and heat transfer outside the flat wave-finned tube (in Chinese). J Eng Thermophys, 2007, 24(1): 122–124

    Google Scholar 

  3. Zhang K F, Yang L J, Du X Z, et al. Flow and heat transfer characteristics of cooling air outside the flat wave-finned tube banks of aircooled condensers (in Chinese). Proc Chinese Soc Elec Eng, 2008, 28(26): 24–28

    Google Scholar 

  4. Guo Z Y, Li Z X, Zhou S Q, et al. Principle of uniformity of temperature difference field in heat exchanger. Sci China Ser E-Tech Sci, 1996, 39(1): 68–75

    Google Scholar 

  5. DeJong N C, Zhang L W, Jacobi A M, et al. A complementary experimental and numerical study of the flow and heat transfer in offset strip-fin heat exchangers. J Heat Trans, 1998, 120(3): 690–698

    Article  Google Scholar 

  6. Burton R L, Jacobi A M, Michna G J. An experimental study of the friction factor and mass transfer performance of an offset-Strip fin array at very high Reynolds numbers. J Heat Trans, 2007, 129(9): 1134–1140

    Article  Google Scholar 

  7. Eckert E G, Goldstein R J, Patankar S V, et al. Heat transfer—A review of 1981 literature. Int J Heat Mass Trans, 1982, 25(12): 1783–812

    Article  MATH  Google Scholar 

  8. Liu W, Liu Z C, Wang Y S, et al. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger. Sci China Ser E-Tech Sci, 2009, 52(10): 2952–2959

    Article  MATH  Google Scholar 

  9. Yuan Z X, Wang Q W, Ma C F, et al. Numerical simulation on the heat transfer and fluid flow in the parallel-flate channels with longitudinal fin arrays (in Chinese). J Eng Thermophys, 1998, 19(6): 720–723

    Google Scholar 

  10. Yuan Z X. Prediction of 3-D turbulent flow and heat transfer in a channel with longitudinal periodical rectangular fins (in Chinese). J Beijing Polytech Univ, 1999, 25(2): 1–6

    Google Scholar 

  11. Saad A E, Shamloul M M, Ahmed M A, et al. Investigation of turbulent heat transfer and fluid flow in longitudinal rectangular-fin arrays of different geometries and shrouded fin array. Exp Therm Fluid Sci, 2002, 26(8): 879–900

    Article  Google Scholar 

  12. Mutlu I, Al-Shemmeri T T. The effect of crossflow on heat transfer augmentation with interrupted longitudinal fins. Exp Therm Fluid Sci, 1994, 8(1): 91–100

    Article  Google Scholar 

  13. Jiang G D. Heat transfer and pressure drop of tube banks with interrupted half annular groove fin (in Chinese). J Chem Indus Eng, 2000, 51(5): 604–608

    Google Scholar 

  14. Chang S W, Su L M, Yang T L, et al. Enhanced heat transfer of forced convective fin flow with transverse ribs. Int J Therm Sci, 2004, 43: 185–200

    Article  Google Scholar 

  15. Dogana M, Sivrioglub M. Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel. Int J Heat Mass Trans, 2010, 53(9–10): 2149–2158

    Article  Google Scholar 

  16. Tang J C, Ma C C, Su X C, et al. Comparison convective heat transfer effect study on intermittent and flate fins of air cooling coil in air conditioning engineering. Energy Technol, 2010, 31(5): 259–262

    Google Scholar 

  17. Guo J F, Xu M T, Cheng L. Principle of equipartition of entranspy dissipation for heat exchanger design. Sci China Tech Sci, 2010, 53: 1309–1314

    Article  MATH  Google Scholar 

  18. Gu W Z, et al. Enhancement Heat Transfer (in Chinese). Beijing: Science Press, 1990. 445–451

    Google Scholar 

  19. Wang S P, Chen Q L, Zhang B J, et al. A general theoretical principle for single-phase convection heat transfer enhancement. Sci China Ser E-Tech Sci, 2009, 52(12): 3521–3526

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoZe Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Du, X., Yang, Y. et al. Study on heat transfer enhancement of discontinuous short wave finned flat tube. Sci. China Technol. Sci. 54, 3281–3288 (2011). https://doi.org/10.1007/s11431-011-4572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4572-0

Keywords

Navigation