Skip to main content
Log in

Double-loop robust tracking control for micro machine tools

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is employed to suppress exogenous low frequency disturbances such as friction and cutting force. To further eliminate the residual disturbance and to guarantee the robust tracking to the reference input, a µ-synthesis outer-loop controller is designed. For eliminating the steady state error, a technique is proposed to design the µ-synthesis outer-loop controller with an integrator. A guideline to select the bandwidth of the Q-filter in the DOB is provided. Simulations using a model of a prototype micro-milling machine indicate that the proposed outer-loop synthesis scheme is superior to the H suboptimal control in disturbance rejection performance and steady state tracking performance. Furthermore, it is shown experimentally that the proposed double-loop robust tracking controller improves the tracking performance of the stage by 29.6% over PID control with a DOB inner-loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae J, Park S S, Freiheit T. Investigation of micro-cutting operations. Int J Mach Tool Manu, 2006, 46: 313–332

    Article  Google Scholar 

  2. Corbett J, McKeon P A, Peggs G N, et al. Nanotechnology: International developments and emerging products. CIRP Ann-Manuf Techn, 2000, 49: 523–546

    Article  Google Scholar 

  3. Madou M J. Fundamentals of Microfabrication. Boca Raton: CRC Press, 1997

    Google Scholar 

  4. Weck M, Fischer S, Vos M. Fabrication of micro components using ultra precision machine tools. Nanotechnology, 1997, 8: 145–148

    Article  Google Scholar 

  5. Lang W. Reflexions on the future of microsystems. Sensor Actuat, 1999, 72: 1–15

    Article  Google Scholar 

  6. Alter D M, Tsao T C. Stability of turning processes with actively controlled linear motorfeed drives. J Eng Ind Trans ASME, 1994, 116: 298–307

    Article  Google Scholar 

  7. Alter D M, Tsao T C. Control of linear motors for machine tool feed drives: Design and implementation of H-infinity optimal feedback control. J Dyn Syst-T ASME, 1996, 118: 649–656

    Article  MATH  Google Scholar 

  8. Van den Braembussche P, Swevers J, Van Brussel H. Design and experimental validation of robust controllers for machine tool drives with linear motor. Mechatronics, 2001, 11: 545–562

    Article  Google Scholar 

  9. Yen P L. A two-loop robust controller for compensation of the variant friction force in an over-constrained parallel kinematic machine. Int J Mach Tool Manu, 2008, 48: 1354–1365

    Article  Google Scholar 

  10. Azadi Yazdi E, Nagamune R. Multiple robust H-infinity controller design using the nonsmooth optimization method. Int J Robust Nonlin, 2010, 20(11): 1197–1312

    Article  MATH  Google Scholar 

  11. Doyle J, Francis B, Tannenbaum A. Feedback Control Theory. New York: McMillam, 1992

    Google Scholar 

  12. Zhou K M, Doyle J C, Glover K. Robust and Optimal Control, Upper Saddle River. New Jersey: Prentice Hall, 1996

    Google Scholar 

  13. Gu D W, Petkov P Hr, Konstantinov M M. Robust Control Design with MATLAB. Lodon: Springer Press, 2005

    MATH  Google Scholar 

  14. Gahinet P, Apkarian P. A linear matrix inequality approach to H -control. Int J Robust Nonlin, 1994, 4(4): 421–448

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwasaki T, Skelton R E. All controllers for the general H -control problem: LMI existence conditions and state space formulas. Automatica, 1994, 30(8): 1307–1317

    Article  MathSciNet  MATH  Google Scholar 

  16. Erkorkmaz K, Altintas Y. High speed CNC system design. Part II: Modeling and identification of feed drives. Int J Mach Tool Manu, 2001, 41: 1487–1509

    Article  Google Scholar 

  17. Umeno T, Hori Y. Robust speed control of dc servomotors using modern 2 degrees-of-freedom controller-design. IEEE T Ind Electron, 1991, 38: 363–368

    Article  Google Scholar 

  18. Lee H S, Tomizuka M. Robust motion controller design for high-accuracy positioning systems. IEEE T Ind Electron, 1996, 43: 48–55

    Article  Google Scholar 

  19. Endo S, Kobayashi H, Kempf C J, et al. Robust digital tracking controller design for high-speed positioning systems. Control Eng Pract, 1996, 4(4): 527–536

    Article  Google Scholar 

  20. Schrijver E, Van Dijk J. Disturbance observers for rigid mechanical systems: Equivalence, stablity, and design. J Dyn Syst-T ASME, 2002, 124: 539–548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiXun Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Nagamune, R. & Fan, D. Double-loop robust tracking control for micro machine tools. Sci. China Technol. Sci. 54, 3054–3063 (2011). https://doi.org/10.1007/s11431-011-4561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4561-3

Keywords

Navigation