Skip to main content
Log in

Preparation and characterization of laser-irradiation induced amorphous for Ge2Sb2Te5 phase-change materials

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

It has been a challenge to fully understand the structural characteristics of laser-irradiation induced amorphous (L-a) Ge2Sb2Te5 (GST) alloy due to the difficulties of collecting diffraction data from high purity specimens. In this paper, by fabricating GST thin films on different substrates, we exhibit an effective way of preparing L-a GST dots in submicron scale on various types of specially designed transmission electron microscope (TEM) grids. The structural characteristics of L-a GST in the form of pair distribution functions (PDF) can be achieved on single dots of L-a GST via selected area electron diffraction (SAED). This general approach would be convenient for precisely producing laser-irradiation induced materials in submicron scale for structural investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys, 1991, 69(5): 2849–2856

    Article  Google Scholar 

  2. Ovshinsky S R. Optically induced phase-changes in amorphous materails. J Non-cryst Solids, 1992, 141(1–3): 200–203

    Article  Google Scholar 

  3. Rubin K A, Birnie D P, Chen M. Effect of multilayer structure and laser-pulse width on the reversible cycling of phase-change optical storage media. J Appl Phys, 1992, 71(8): 3680–3687

    Article  Google Scholar 

  4. Yamada N, Matsunaga T. Structure of laser-crystallized Ge2Sb2+x Te5 sputtered thin films for use in optical memory. J Appl Phys, 2000, 88(12): 7020–7027

    Article  Google Scholar 

  5. Stefan L, Tyler L. OUM-a 180 nm nonvolatile memory cell element technology for stand alone and embeded applications. IEEE Conference Proceedings of International Electron Devices Meeting, 2001, 1: 803–808

    Google Scholar 

  6. Volkert C A, Wuttig M. Modeling of laser pulsed heating and quenching in optical data storage media. J Appl Phys, 1999, 86(4): 1808–1823

    Article  Google Scholar 

  7. Kolobov A V, Fons P, Frenkl A I, et al. Understanding the phase-change mechanism of rewritable optical media. Nat Mater, 2004, 3: 703–708

    Article  Google Scholar 

  8. Akola J, Jones O R. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys Rev B, 2007, 76(235201): 1–10

    Google Scholar 

  9. Sun Z M, Zhou J, Blomqvist A, et al. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. Phys Rev Lett, 2009, 102(075504): 1–4

    Google Scholar 

  10. Xu M, Cheng Y Q, Sheng H W, et al. Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys Rev Lett, 2009, 103(195502): 1–4

    Google Scholar 

  11. Hegedus J, Elliott S R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat Mater, 2008, 7: 399–405

    Article  Google Scholar 

  12. Borg H J, Schijndel M V, Rijpers J C N, et al. Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn J Appl Phys, 2001, 40: 1592–15977

    Article  Google Scholar 

  13. Khulbe P K, Hurst T, Horie M, et al. Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks. Appl Opt, 2002, 41(29): 6220–6228

    Article  Google Scholar 

  14. Kiyono K, Horie M, Ohno T, et al. Rewritable multilevel recording by mark-size modulation on growth-dominant phase-change material. Jpn J Appl Phys, 2001, 40: 1855–1860

    Article  Google Scholar 

  15. Naito M, Ishimaru M, Hirotsu Y, et al. Local structure analysis of Ge-Sb-Te phase change materials using high-resolution electron microscopy and nanobeam diffraction. J Appl Phys, 2004, 95(12): 8130–8134

    Article  Google Scholar 

  16. Siegel J, Gawelda W, Puerto D, et al. Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation. J Appl Phys, 2008, 103(023516): 1–7

    Google Scholar 

  17. Weidenhof V, Friedrich I, Ziegler S, et al. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J Appl Phys, 2001, 89(6): 3168–3176

    Article  Google Scholar 

  18. Jovari P, Kaban I, Steiner J, et al. ’Wrong bonds’ in sputtered amorphous Ge2Sb2Te5. J Phys-Condens Matter, 2007, 19(335212): 1–9

    Google Scholar 

  19. Kohara S, Kato K, Kimura S, et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl Phys Lett, 2006, 89(201910): 1–3

    Google Scholar 

  20. Khulbe P K, Wright E M, Mansuripur M. Crystallization behavior of as-deposited, melt-quenched, and primed amorphous states of Ge2Sb2.3Te5 films. J Appl Phys, 2000, 88(7): 3926–3933

    Article  Google Scholar 

  21. Shamsa M, Liu W L, Balandina A A, et al. Thermal conductivity of diamond-like carbon films. Appl Phys Lett, 2006, 89(161921): 1–3

    Google Scholar 

  22. Weidenhof V, Friedrich O. Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5. J Appl Phys, 1999, 86(10): 5879–5887

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoDong Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Huang, H., Yan, Z. et al. Preparation and characterization of laser-irradiation induced amorphous for Ge2Sb2Te5 phase-change materials. Sci. China Technol. Sci. 54, 3404–3408 (2011). https://doi.org/10.1007/s11431-011-4560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4560-4

Keywords

Navigation