Skip to main content
Log in

A 3D bounding surface model for rockfill materials

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A 3D bounding surface model is established for rockfill materials, which can be applied to appropriately predict the deformation and the stabilization of rockfill dams. Firstly, an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests. Secondly, the constitutive equations of the 3D bounding surface model are established by several steps. These steps include the bounding surface incorporating the general nonlinear strength criterion, stress-dilatancy equations, the evolution of the bounding surface and the bounding surface plasticity. Finally, the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests. Consequently, the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening, the post-peak strain softening, and the volumetric strain contraction and expansion in both two- and three-dimensional stress spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coop M R, Sorensen K K, Freitas T B, et al. Particle breakage during shearing of a carbonate sand. Géotechnique, 2004, 54(3): 157–163

    Article  Google Scholar 

  2. Guerrero S L, Vallejo L E. Modeling granular crushing in ring shear tests: experimental and numerical analyses. Soils Found, 2006, 46(2): 147–157

    Article  Google Scholar 

  3. Varadarajan A, Sharma K G, Venkatachalam K, et al. Testing and modeling two rockfill materials. J Geotech Geoenviron Eng ASCE, 2003, 129(3): 206–218

    Article  Google Scholar 

  4. Abbas S M. Testing and modeling the behavior of riverbed and quarried rockfill materials. Doctoral Dissertation. New Delhi: Indian Institute of Technology Delhi, 2003

    Google Scholar 

  5. Liu H L, Qin H Y, Gao Y F, et al. Experimental study on particle breakage of rockfill and coarse aggregates (in Chinese). Rock Soil Mech, 2005, 26(4): 562–566

    Google Scholar 

  6. Wei S, Zhu J G, Qian Q H, et al. Particle breakage of coarse-grained materials in triaxial tests (in Chinese). Chin J Geotech Eng, 2009, 31(4): 533–538

    Google Scholar 

  7. Liu M C, Gao Y F, Liu H L. Study on shear dilatancy behaviors of rockfills in large-scale triaxial tests (in Chinese). Chin J Geotech Eng, 2008, 30(2): 205–211

    Article  Google Scholar 

  8. Lade P V, Liggio C D Jr, Nam J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand. J Geotech Geoenviron Eng ASCE, 2009, 135(7): 941–953

    Article  Google Scholar 

  9. Lade P V, Nam J, Liggio C D Jr. Effects of particle crushing in stress drop-relaxation experiments on crushed coral Sand. J Geotech Geoenviron Eng ASCE, 2010, 136(3): 500–509

    Article  Google Scholar 

  10. Karimpour H, Lade P V. Time effects relate to crushing in sand. J Geotech Geoenviron Eng ASCE, 2010, 136(9): 1209–1219

    Article  Google Scholar 

  11. Shi W C. True triaxial tests on coarse-grained soils and study on constitutive model (in Chinese). Doctoral Dissertation. Nanjing: Hohai University, 2008. 42–98

    Google Scholar 

  12. Kulhawy F H, Duncan J M. Stresses and movements in Oroville dam. J Soil Mech Found ASCE, 1972, 98(7): 653–665

    Google Scholar 

  13. Saboya F J Jr, Byrne P M. Parameters for stress and deformation analysis of rockfill dam. Can Geotech J, 1993, 30(4): 690–701

    Article  Google Scholar 

  14. Kolymbas D. An outline of hypoplasticity. Arch Appl Mech, 1991, 61(3): 143–151

    MATH  Google Scholar 

  15. Wu W, Bauer E. A simple hypoplastic constitutive model for sand. Int J Numer Analyt Meth Geomech, 1994, 18(12): 833–862

    Article  MATH  Google Scholar 

  16. Gudehus G. A comprehensive constitutive equation for granular materials. Soils Found, 1996, 36(1): 1–12

    Google Scholar 

  17. Bauer E. Calibration of a comprehensive hypoplastic model for granular materials. Soils Found, 1996, 36(1): 13–26

    Google Scholar 

  18. Bauer E. Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotech, 2009, 4(4): 261–272

    Article  Google Scholar 

  19. Cen W J, Wang X X, Bauer E, et al. Study on hypoplastic constitutive modeling of rockfill and its application (in Chinese). Chin J Geotech Eng, 2007, 26(2): 312–322

    Google Scholar 

  20. Desai C S, Faruque M O. Constitutive model for (geological) materials. J Eng Mech ASCE, 1984, 110(9): 1391–1408

    Article  Google Scholar 

  21. Desai C S, Somasundram S, Frantziskonis G.. A hierarchical approach for constitutive modeling of geologic materials. Int J Numer Analyt Meth Geomech, 1986, 10(3): 225–257

    Article  MATH  Google Scholar 

  22. Lade P V, Kim M K. Single hardening constitutive model for soil, rock and concrete. Int J Solids Struct, 1995, 32(14): 1963–1978

    Article  MATH  Google Scholar 

  23. Pestana J M, Whittle A J. Compression model for cohesionless soils. Géotechnique, 1995, 45(4): 611–631

    Article  Google Scholar 

  24. Yao Y P, Sun D A, Matsuoka H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech, 2008, 35(2): 210–222

    Article  Google Scholar 

  25. Huang W X, Ren Q W, Sun D A. A study of mechanical behavior of rock-fill materials with reference to particle crushing. Sci China Ser E-Tech Sci, 2007, 50: 125–135

    Article  Google Scholar 

  26. Liu H L, Xiao Y, Liu J Y, et al. A new elliptic-parabolic yield surface model revised by an adaptive criterion for granular soils. Sci China Tech Sci, 2010, 53(8): 2152–2159

    Article  MathSciNet  MATH  Google Scholar 

  27. Chavez C, Alonso E E. A constitutive model for crushed granular aggregates which includes suction effects. Soils Found, 2003, 43(4): 215–227

    Google Scholar 

  28. Oldecop L A, Alonso E E. A model for rockfill compressibility. Géotechnique, 2001, 51(2): 127–139

    Article  Google Scholar 

  29. Chu B L, Jou Y W, Weng M C. A constitutive model for gravelly soils considering shear-induced volumetric deformation. Can Geotech J, 2010, 47(6): 662–673

    Article  Google Scholar 

  30. Varadarajan A, Sharma K G, Abbas S M, et al. Constitutive model for rockfill materials and determination of material constants. Int J GeoMech ASCE, 2006, 6(4): 226–237

    Article  Google Scholar 

  31. Xu Y J, Pan J J, Chu X H, et al. Study on constitutive model for rockfill material based on the disturbed state concept (in Chinese). Eng Mech, 2010, 27(6): 154–161

    Article  Google Scholar 

  32. Desai C S. Mechanics of Materials and Interfaces-The Disturbed State Concept. Boca Raton: CRC Press, 2001

    Google Scholar 

  33. Desai C S, Toth J. Disturbed state constitutive modelling based on stress-strain and nondestructive behavior. Int J Solids Struct, 1996, 33(11): 1619–1650

    Article  Google Scholar 

  34. Desai C S, Basaran C, Zhang W. Numerical algorithms and mesh dependence in the disturbed state concept. Int J Numer Meth Eng, 1997, 40(16): 3059–3083

    Article  MATH  Google Scholar 

  35. Desai C S, Zhang W. Computational aspects of disturbed state constitutive models. Comput Method Appl Mech Eng, 1998, 151: 361–376

    Article  MATH  Google Scholar 

  36. Shao C M, Desai C S. Implementation of DSC model and application for analysis of field pile tests under cyclic loading. Int J Numer Analyt Meth Geomech, 2000, 24(6): 601–624

    Article  MATH  Google Scholar 

  37. Liu M D, Carter J P, Desai C S, et al. Analysis of the compression of structured soils using the disturbed state concept. Int J Numer Analyt Meth Geomech, 2000, 24(8): 723–735

    Article  MATH  Google Scholar 

  38. Desai C S, Chen J Y. Parameter optimization and sensitivity analysis for disturbed state constitutive model. Int J GeoMech ASCE, 2006, 6(2): 75–88

    Article  Google Scholar 

  39. Dafalias Y F, Popov E P. Plastic internal variables formalism of cyclic plasticity. J Appl Mech, 1976, 43(4): 645–651

    Article  MATH  Google Scholar 

  40. Dafalias Y F, Herrmann L R. Bounding surface plasticity: II. Application to isotropic cohesive soils. J Eng Mech ASCE, 1986, ll2(12): 1263–1291

    Article  Google Scholar 

  41. Anandarajah A, Dafalias Y F. Bounding surface plasticity. III: Application to anisotropic cohesive soils. J Eng Mech ASCE, 1986, ll2(12): 1292–1318

    Article  Google Scholar 

  42. Ling H I, Yue D, Kaliakin V, et al. Anisotropic elastoplastic bounding surface model for cohesive soils. J Eng Mech ASCE, 2002, 128(7): 748–758

    Article  Google Scholar 

  43. McVay M, Taesiri Y. Cyclic behavior of pavement base materials. J Geotech Eng ASCE, 1985, 111(1): 1–17

    Article  Google Scholar 

  44. Yang B L, Dafalias Y F, Herrmann L R. A bounding surface plasticity model for concrete. J Eng Mech ASCE, 1985, 111(3): 359–380

    Article  Google Scholar 

  45. Bardet J P. Bounding surface plasticity model for sands. J Eng Mech ASCE, 1986, 112(11): 1198–1217

    Article  Google Scholar 

  46. Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticity model for sand. J Eng Mech ASCE, 1990, 116(5): 983–1001

    Article  Google Scholar 

  47. Ling H I, Liu H B, Mohri Y, et al. Bounding surface model for geosynthetic reinforcements. J Eng Mech ASCE, 2001, 127(9): 963–967

    Article  Google Scholar 

  48. Liu H, Ling H I. Unified elastoplastic-viscoplastic bounding surface model of geosynthetics and its applications to geosynthetic reinforced soil-retaining wall analysis. J Eng Mech ASCE, 2007, 133(7): 801–815

    Article  Google Scholar 

  49. Luan M T, Wu X Z, Li X S. Bounding-surface hypoplasticity model for rockfill materials and its verification (in Chinese). Chin J Rock Mech Eng, 2001, 20(2): 164–170

    Google Scholar 

  50. Xiao Y, Liu H L, Liang R Y. Modified Cam-Clay model incorporating unified nonlinear strength criterion. Sci China Tech Sci, 2011, 54(4): 805–810

    Article  Google Scholar 

  51. Matsuoka H, Yao Y P, Sun D A. The Cam-clay models revised by the SMP criterion. Soils Found, 1999, 39: 81–95

    Google Scholar 

  52. Yao Y P, Sun D A. Application of Lade’s criterion to Cam-clay model. J Eng Mech ASCE, 2000, 126: 112–119

    Article  Google Scholar 

  53. Yao Y P, Lu D C, Zhou A N, et al. Generalized non-linear strength theory and transformed stress space. Sci China Ser E-Tech Sci, 2004, 47: 691–709

    Article  MATH  Google Scholar 

  54. Mortara G. A new yield and failure criterion for geomaterials. Géotechnique, 2008, 58: 125–132

    Article  Google Scholar 

  55. Su D, Wang Z L, Xing F. A two-parameter expression for failure surfaces. Comp Geotech, 2009, 36: 517–524

    Article  Google Scholar 

  56. Xiao Y, Liu H L, Zhu J G. Failure criterion for granular soils (in Chinese). Chin J Geotech Eng, 2010, 32: 586–591

    Google Scholar 

  57. Roscoe K H, Burland J B. On the Generalized Stress-Strain Behavior of ‘Wet’ Clay. Cambridge: Cambridge University Press, 1968. 535–609

    Google Scholar 

  58. Rowe P W. The stress-dilatancy relations for static equilibrium of an assembly of particles in contact. Proc R Soc, London, Ser A, 1962, 269(1339): 500–527

    Article  Google Scholar 

  59. Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical. Géotechnique, 1963, 13(3): 211–240

    Article  Google Scholar 

  60. Been K, Jeferies M G. A state parameter for sands. Géotechnique, 1985, 35(2): 99–112

    Article  Google Scholar 

  61. Jefferies M G. NorSand: A simple critical state model for sand. Géotechnique, 1993, 43(1): 91–103

    Article  MathSciNet  Google Scholar 

  62. Muir Wood D, Belkheiasr K, Liu D F. Strain softening and state parameter for sand modeling. Géotechnique, 1994, 44(2): 335–339

    Article  Google Scholar 

  63. Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands. Géotechnique, 1997, 47(2): 255–272

    Article  Google Scholar 

  64. Gajo A, Muir Wood D. Severn-Trent sand: A kinematic hardening constitutive model: the q-p formulation. Géotechnique, 1999, 49(5): 595–614

    Article  Google Scholar 

  65. Li X S, Dafalias Y F. Dilatancy for cohesionless soils. Géotechnique, 2000, 50(4): 449–460

    Article  Google Scholar 

  66. Wan R G, Guo P J. Drained cyclic behavior of sand with fabric dependence. J Eng Mech ASCE, 2001, 127(11): 1106–1116

    Article  Google Scholar 

  67. Yang Y, Muraleetharan K K. The middle surface concept and its application to elastoplastic behavior of saturated sands. Géotechnique, 2003, 53(4): 421–431

    Article  Google Scholar 

  68. Taiebat M, Dafalias Y F. SANISAND: Simple anisotropic sand plasticity model. Int J Numer Analyt Meth Geomech, 2008, 32(8): 915–948

    Article  Google Scholar 

  69. Bolton M D. The strength and dilatancy of sands. Géotechnique, 1986, 36(1): 65–78

    Article  Google Scholar 

  70. Ueng T S, Chen T J. Energy aspects of particle breakage in drained shear of sands. Géotechnique, 2000, 50(1): 65–72

    Article  Google Scholar 

  71. Salim W, Indraratna B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Can Geotech J, 2004, 41(4): 657–671

    Article  Google Scholar 

  72. Jia Y F, Chi S C, Lin G. Dilatancy unified constitutive model for coarse granular aggregates incorporating particle breakage (in Chinese). Rock Soil Mech, 2010, 31(5): 1381–1388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanLong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Liu, H., Zhu, J. et al. A 3D bounding surface model for rockfill materials. Sci. China Technol. Sci. 54, 2904–2915 (2011). https://doi.org/10.1007/s11431-011-4554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4554-2

Keywords

Navigation