Skip to main content
Log in

Statistical spectrum model of wind velocity at Beijing Meteorological Tower

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform, respectively. A innovative model of wind velocity spectrum, which is accordant with the characteristics in both the inertial subrange and the large eddies range, is presented in this paper. The method of least squares is adopted to obtain the parameters in the model. Then the differences between the FFT spectrum and the HHT spectrum are compared. It is indicated that the values of the HHT spectrum in the energy containing range are slightly larger than those of the FFT spectrum while the values of the HHT spectrum in both inertial subrange and dissipation subrange are very close to that of Fourier spectrum. It is concluded that the HHT spectrum describes elaborately and accurately the spectrum values in the low frequencies and the fitted wind velocity model provides a reference for reconstructing the near-ground wind field of Beijing city in wind tunnel test and for numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson L F. Weather prediction by numerical process. Cambridge: Cambridge University Press, 1922

    MATH  Google Scholar 

  2. Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers (in Russian). Dokl Akad Nauk SSSR, 1941, 30: 299–303

    Google Scholar 

  3. Heisenberg W. Zur statistischen theorie der turbulenz. Max Plank Institute fur Physik, Gottingen, 1946

    Google Scholar 

  4. Weiszacker C F V. Das spectrum der turbulenz, Max Plank Institute fur Physik, Gottingen, 1946

    Google Scholar 

  5. Pao Y H. Structure of turbulent velocity and scalar fields at large wave-numbers. Phys Fluids, 1965, 8: 1063–1075

    Article  Google Scholar 

  6. Heisenberg W. On the theory of statistical and isotropic turbulence. Proc R Soc London Ser. A, 1948, 195: 402–406

    Article  MathSciNet  MATH  Google Scholar 

  7. Batchelor G K. Kolmogoroff’s theory of locally isotropic turbulence. Math Proc Cambridge Philos Soc, 1947, 43: 533–559

    Article  MathSciNet  MATH  Google Scholar 

  8. Batchelor G K. The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press, 1953

    MATH  Google Scholar 

  9. Simiu E, Scanlan R H. Wind Effects on Structures: Fundamentals and Applications to Design. 3rd ed. New York: Wiley, 1996

    Google Scholar 

  10. Tieleman H W. Wind characteristics in the surface layer over heterogeneous terrain. J Wind Eng Ind Aerodyn, 1992, 41: 329–340

    Article  Google Scholar 

  11. Karman T V. Progress in the statistical theory of turbulence. Proc Nat Acad Sci USA, 1948, 34: 530–539

    Article  MATH  Google Scholar 

  12. Solari G. Turbulence modeling for gust loading. J Struct Engrg, ASCE, 1987, 113: 1550–1569

    Article  Google Scholar 

  13. Wyngaard J C, Cote O R, Rao K S. Modeling the atmospheric boundary layer. Adv Geophys, 1974, 18A: 193–211

    Google Scholar 

  14. Deaves D M, Harris R I. A mathematical model of the structure of strong winds. CIRIA Report 76, Construction Industry Research and Information Association, London, U K, 1978

    Google Scholar 

  15. Engineering Sciences Data Unit. Characteristics of atmospheric turbulence near the ground. Part II: Single point data for strong winds (neutral atmosphere). ESDU 85020, ESDU, London, U K, 1985

    Google Scholar 

  16. Fichtl G E, McVehil G E. Longitudinal and lateral spectra of turbulence in the atmospheric boundary layer at the Kennedy Space Center. Appl Meteorol, 1970, 9: 51–63

    Article  Google Scholar 

  17. Simiu E. Wind spectra and dynamic alongwind response. Struct Div, ASCE, 1974, 100: 1897–1910

    Google Scholar 

  18. Solari G. Gust buffeting. I: Peak wind velocity and equivalent pressure. J Struct Eng, 1993, 119: 365–382

    Article  Google Scholar 

  19. Lumley J L, Panofsky H A. The Structure of Atmospheric Turbulence. New York: Wiley, 1962

  20. Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface layer turbulence. Quart J Roy Meteorol Soc, 1972, 98: 563–589

    Article  Google Scholar 

  21. Hino M. Spectrum of gusty wind. In: Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan, 1971. 69–77

  22. Harris R I. The nature of the wind. In: Proceedings of the Seminar on the Modern Design of Wind Sensitive Structures, Institution of Civil Engineers, London, 1970. 29–55

  23. Kareem A. Wind induced response analysis of tension leg platforms. J Struct Engng, ASCE 1985, 11: 37–55

    Article  Google Scholar 

  24. Tieleman H W. Universality of velocity spectra. J Wind Engng Ind Aerodynam, 1995, 56: 55–69

    Article  Google Scholar 

  25. Davenport A G. The spectrum of horizontal gustiness near the ground in high winds. Q J Royal Meteorological Soc, 1961, 87: 194–211

    Article  Google Scholar 

  26. Simiu E, Leigh S D. Turbulent wind and tension leg platform surge. Struct Eng, ASCE, 1984, 110: 785–802

    Article  Google Scholar 

  27. Huang N E, Chern C C, Huang K, et al. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan, 21 September 1999. Bull Seismol Soc Am, 2001, 91: 1310–1338

    Article  Google Scholar 

  28. Kareem A, Kijewski T. Time-frequency analysis of wind effects on structures. J Wind Eng IndAerodyn, 2002, 90: 1435–1452

    Article  Google Scholar 

  29. Xu Y L, Chen J. Characterizing nonstationary wind speed using empirical mode decomposition. J Struct Eng, 2004, 130: 912–920

    Article  Google Scholar 

  30. Li Q S, Wu J R. Time-frequency analysis of typhoon effects on a 79-storey tall building. J Wind Eng Ind Aerodyn, 2007, 95: 1648–1666

    Article  Google Scholar 

  31. Huang N, Shen Z, Long S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond, 1998, 454A: 903–993

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuJi Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Yang, Q., Yang, N. et al. Statistical spectrum model of wind velocity at Beijing Meteorological Tower. Sci. China Technol. Sci. 54, 2869–2877 (2011). https://doi.org/10.1007/s11431-011-4551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4551-5

Keywords

Navigation