Skip to main content
Log in

Microscopic phase-field study on order-disorder transition of the antiphase domain boundary formed between L12 phases

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Kinetics of order-disorder transition at antiphase domain boundary (APDB) formed between L12 (Ni3Al) phases is investigated using microscopic phase-field model. The results demonstrate that whether order-disorder transition happens or not depends on the atomic structure of the APDB. Accompanied with the enrichment of V and depletion of Ni and Al, the ordered APDB with phase-shift vector of a/2[100] transforms into a thin disordered phase layer. Whereas at the APDB with phase shift vector of a/2[110], which remains ordered with temporal evolution, Ni and Al enrich and V depletes. Composition evolution of APDB with order-disorder transition favors the nucleation of DO22 phase, and the formation of disordered phase layer accelerates the growth of DO22 phase. The disordered phase caused by order-disordered transition of the APDB can be considered as the transient phase along the precipitation path of DO22 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S Q, Ye H Q. Theoretical studies of solid-solid interfaces. Curr Opin Solid State Mater Sci, 2006, 10(1): 26–32

    Article  Google Scholar 

  2. Oramus P, Kozłowski M, Kozubski R, et al. Dynamics of atomic ordering in intermetallics. Mat Sci Eng, 2004, A365: 166–171

    Google Scholar 

  3. Tang M, Carter W C, Cannon R M. Grain boundary order-disorder transitions. J Mater Sci, 2006, 41: 7691–7695

    Article  Google Scholar 

  4. Loiseau A. The role of interfaces and domain boundaries in order-disorder transitions. Curr Opin Solid State Mater Sci, 1996, 1(3): 369–377

    Article  Google Scholar 

  5. Tang M, Carter W C, Cannon R M. Grain boundary transitions in binary alloys. Phys Rev Lett, 2006, 97(7): 075502

    Article  Google Scholar 

  6. Wynblatt P, Chatain D. Solid-state wetting transitions at grain boundaries. Mat Sci Eng A, 2008, 495: 119–125

    Article  Google Scholar 

  7. Straumal B, Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci, 2004, 12: 147–155

    Article  Google Scholar 

  8. Chatain D, Rabkin E, Derenne J, et al. Role of the solid/liquid interface faceting in rapid penetration of a liquid phase along grain boun boundaries. Acta Mater, 2001, 49(7): 1123–1128

    Article  Google Scholar 

  9. Becker C A, Mishin Y, Boettinger W J. The pre-wetting transition at antiphase boundaries: An atomistic modeling study of Ni3Al. J Mater Sci, 2008, 43: 3873–3880

    Article  Google Scholar 

  10. Mishin Y. Atomistic modeling of the γ and γ′ phases of the Ni-Al system. Acta Mater, 2004, 52(8): 1451–1467

    Article  Google Scholar 

  11. Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling. Acta Mater, 2009, 57(13): 3771–3785

    Article  Google Scholar 

  12. Williams P L, Mishin Y. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation. Acta Mater, 2009, 57(13): 3786–3794

    Article  Google Scholar 

  13. Wang Y, Banerjee D, Su C C, et al. Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from f.c.c. solid solution. Acta Mater, 1998, 46(9): 2983–3001

    Article  Google Scholar 

  14. Khachaturyan A G. Theory of Structural Transformations in Solids. New York: Wiley, 1983

    Google Scholar 

  15. Poduri R, Chen L Q. Computer simulation of atomic ordering and compositional clustering in the pseudobinary Ni3Al-Ni3V system. Acta Mater, 1998, 46(4): 1719–1729

    Article  Google Scholar 

  16. Pareige C, Blavette D. Simulation of the FCC → FCC + L12 + DO22 kinetic reaction. Scr Mater, 2001, 44(2): 243–247

    Article  Google Scholar 

  17. Lu Y L, Chen Z, Wang Y X. Microscopic phase-field simulation of the early precipitation mechanism of Ni3Al phase in Ni-Al alloys. Mater Lett, 2008, 62: 1385–1388

    Article  Google Scholar 

  18. Zapolsky H, Pareige C, Marteau L, et al. Atom probe analyses and numerical calculation of ternary phase diagram in Ni-Al-V system. Calphad, 2001, 25(1): 125–134

    Article  Google Scholar 

  19. Chen L Q, Khachaturyan A G. Kinetics of virtual phase formation during precipitation of ordered intermetallics. Phys Rev B, 1992, 46(9): 5899–5905

    Article  Google Scholar 

  20. Ni J, Gu B L. Transient ordered states during relaxation from a quenched disordered state to an equilibrium disordered state. Phys Rev Lett, 1997, 79(20): 3922–3925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingYi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Yang, K., Chen, Z. et al. Microscopic phase-field study on order-disorder transition of the antiphase domain boundary formed between L12 phases. Sci. China Technol. Sci. 54, 3409–3414 (2011). https://doi.org/10.1007/s11431-011-4509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4509-7

Keywords

Navigation