Skip to main content
Log in

The application of back-scattered electron imaging for characterization of pearlitic steels

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The microstructures of pearlitic steel wire rods and steel wires are commonly characterized by secondary electron imaging (SEI) technique using scanning electron microscopy (SEM). In this work, a back-scattered electron imaging (BSEI) method is proposed to determine the microstructures of undeformed and deformed pearlitic steels with nanometer scale pearlite lamellae. The results indicate that BSEI technique can characterize the pearlite lamellas veritably and is effective in quantitative measurement of the mean size of pearlite interlamellar spacing. To some extent, BSEI method is more suitable than SEI technique for studying undeformed and not severely deformed pearlitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Embury J D, Fisher R M. The structure and properties of drawn pearlite. Acta Metall, 1966, 4: 147–159

    Google Scholar 

  2. Langford G. A study of the deformation of patented steel wire. Metall Trans B, 1970, 1(2): 65–77

    Google Scholar 

  3. Langford G. Deformation of pearlite. Metall Trans Trans A, 1977, 8(6): 861–875

    Article  Google Scholar 

  4. Toribio J, Ovejero E. Effect of cumulative cold drawing on the pearlite interlamellar spacing in eutectoid steel. Scr Mater, 1998, 39(3): 323–328

    Article  Google Scholar 

  5. Zhang X D, Godfrey A, Hansen N, et al. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing. Mater Charact, 2010, 61(1): 65–72

    Article  Google Scholar 

  6. Hono K, Ohnuma M, Murayama M, et al. Cementite decomposition in heavily drawn pearlite steel wire. Scr Mater, 2001, 44(6): 977–983

    Article  Google Scholar 

  7. Grabarz B, Pickering E B. Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium. Mat Sci Tech, 1988, 4(4): 328–334

    Google Scholar 

  8. Doi S N, Kestenbach H J. Determination of the pearlite nodule size in eutectoid steels. Metallogrphy, 1989, 23(2): 135–146

    Article  Google Scholar 

  9. Caballero F G, Capdevila C, García de Andrés C. Modeling of the interlamellar spacing of isothermally formed pearlite in a eutectoid steel. Scr Mater, 2000, 42(6): 537–542

    Article  Google Scholar 

  10. Underwood E E. Quantitative Stereology. MASS: Addison-Wesley, Reading, 1970. 73–75

    Google Scholar 

  11. Vander Voort G F, ROÓZ A. Measurement of the interlamellar spacing of pearlite. Metallography, 1984, 17: 1–17

    Article  Google Scholar 

  12. Hu X H, Van Houtte P, Liebeherr M, et al. Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models. Acta Mater, 2006, 54(4): 1029–1040

    Article  Google Scholar 

  13. Buono V T L, Gonzalez B M, Lima T M, et al. Measurement of fine pearlite interlamellar spacing by atomic force microscopy. J Mater Sci, 1997, 32: 1005–1008

    Article  Google Scholar 

  14. Elwazri A M, Wanjara P, Yue S. Measurement of pearlite interlamellar spacing in hypereutectoid steels. Mater Charact, 2005 54: 473–478

    Article  Google Scholar 

  15. Joy D C, Newbury D E, Davidson D L. Electron channeling patterns in the scanning electron microscope. Appl Phys, 1982, 53(8): R81–R122

    Article  Google Scholar 

  16. Gutierrez-Urrutia I, Zaefferer S, Raabe D. Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scr Mater, 2009, 61: 737–740

    Article  Google Scholar 

  17. Lacayo G, Wollweber J, Schulz D, et al. Back-scattered electron imaging of microscopic segregation in (Si,Ge) single crystals. Cryst Res Technol, 1999, 34(4): 509–517

    Article  Google Scholar 

  18. Wuttrudge N J, Knutsen R D. Recovery and recrystallization characterization in ferritic stainless steel by using electron channeling contrast. Mater Charact, 1996, 37: 31–37

    Article  Google Scholar 

  19. Joy D C. Direct defect imaging in high resolution SEM. Mater Res Soc Symp Proc, 1990, 183: 199–210

    Article  Google Scholar 

  20. Wilkinson A J, Anstis G R, Czernuszka J T, et al. Electron channeling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon. Phil Mag A, 1993, 68(1): 59–80

    Article  Google Scholar 

  21. Trager-Cowan C, Sweeney F, Winkelmann A, et al. Characterization of nitride thin films by electron backscatter diffraction and electron channeling contrast imaging. Mate Sci Technol, 2006, 22: 1352–1358

    Article  Google Scholar 

  22. Hiroshi O, Tashimi T, Masaichi S, et al. High-performance wire rods produced with DLP. Nippon Steel Tech Rep, 2007, 96: 50–56

    Google Scholar 

  23. Takahashi M. Reaustenitization from Bainite in Steels. PhD Dissertation. Cambridge: University of Cambridge, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, N., Liu, Q., Xin, Y. et al. The application of back-scattered electron imaging for characterization of pearlitic steels. Sci. China Technol. Sci. 54, 2368–2372 (2011). https://doi.org/10.1007/s11431-011-4500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4500-3

Keywords

Navigation