Skip to main content
Log in

Control strategy for multiple capsule robots in intestine

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Based on the critical gap phenomenon of the intestinal capsule robot, a variable-diameter capsule robot with radial gap self-compensation is developed in this paper. With the functional variation principle, a fluid dynamic pressure model satisfying the boundary conditions of the outer surface of capsule robot with screw blades is derived. The critical gap phenomenon is studied theoretically and experimentally based on the end effect and the dynamic balance characteristics of the fluid on the surface of capsule robot. The concept of start-up rotation speed is defined, the relationship between the start-up rotation speed and the spiral parameters of capsule robot is investigated. The strategy for implementing drive and control on several capsule robots under the same rotational magnetic field is proposed, and by defining the start-up curves of several capsule robots with the similar motion regulation as the objective functions, genetic algorithm is employed to optimize the spiral parameters of several capsule robots. Experiments have shown that the proposed drive and control strategy for several capsule robots can be implemented effectively. It has a good prospect of application inside intestine to realize the drive and control on several capsule robots for different medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dario P, Hannaford B, Menciassi A. Smart surgical tools and augmenting devices. IEEE Trans Rob Autom, 2003, 19: 782–791

    Article  Google Scholar 

  2. MacFadyen B V, Cuschieri A. Endoluminal surgery. Surg Endosc, 2005, 19: 1–3

    Article  Google Scholar 

  3. Cuschieri A, Melzer A. The impact of technologies on minimally invasive therapy. Surg Endosc, 1997,11: 91–92

    Article  Google Scholar 

  4. Cuschieri A. Minimally invasive surgery: Hepatobiliary-pancreatic and foregut. Endosc, 2000, 32: 331–344

    Article  Google Scholar 

  5. Schostek S, Fischer H, Kalanovic D, et al. Microsystems in medicine-Results of an international survey. Minimally Invasive Therapy Allied Technol, 2005, 14: 360–368

    Article  Google Scholar 

  6. Swain P, Iddan G, Meron G, et al. Wireless capsule endoscopy of the small bowel: Development, testing and first human trials. Proc SPIE, 2001, 41: 19–23

    Article  Google Scholar 

  7. Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy. Nature, 2000, 405: 417–418

    Article  Google Scholar 

  8. Meron G. The development of the swallable video capsule (M2A). Gastrointest Endosc, 2000, 52: 817–819

    Article  Google Scholar 

  9. RF System Lab. NORIKA3. Available (English): http://www.rfamerica.com/sayaka/; (Japanese). 2001

  10. Olympus. [Online]. Available: (English): http://www.olympus-globle.co-m/en/news/2005b/nr051013capsle.cfm (Accessed in 2008)

  11. Jian X Y, Mei T, Wang X H. Driving method of an endoscopic robot capsule by external magnetic field. Robot, 2005, 27: 367–372

    Google Scholar 

  12. Zhang Y, Jiang S, Zhang X, et al. Dynamic characterristics of an intestine capsule robot with variable diameter. Chin Sci Bull, 2010, 55: 1813–1821

    Article  Google Scholar 

  13. Phee L, Accoto D, Menciassi A, et al. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans Biomed Eng, 2002, 49: 613–616

    Article  Google Scholar 

  14. Phee L, Menciassi A, Gorini S, et al. An innovative locomotion principle for minirobots moving in the gastrointestinal tract. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington DC: IEEE, 2002. 1125-1130

    Google Scholar 

  15. Dario P, Ciarletta P, Menciassi A, et al. Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int J Rob Res, 2004, 23: 549–556

    Article  Google Scholar 

  16. Accoto D, Stefanini C, Phee L, et al. Measurements of the Frictional Properties of the Gastrointestinal Tract. Vienna: The World Tribology Congress, 2001

    Google Scholar 

  17. Menciassi A, Stefanini C, Gorini S, et al. Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, Sendai: IEEE, 2004. 937–942

    Google Scholar 

  18. Kassim I, Phee C L, Wan N G. Locomotion techniques for robotic colonoscopy. IEEE Eng Med Biol Maga, 2006, 25: 49–56

    Article  Google Scholar 

  19. Wang X N, Meng M.Q-H. An inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing: IEEE, 2006. 1267–1272

    Chapter  Google Scholar 

  20. Guozheng Y, Qiuong L, Guoqing D, et al. The prototype of a piezoelectric medical robot. In: Proceedings of IEEE International Symposium on Micromechatronics and Human Science, Nagoya: IEEE, 2002. 73–77

    Chapter  Google Scholar 

  21. Kim B, Lee S, Park J H, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE/ASME Trans Mechatron, 2005, 10: 77–86

    Article  Google Scholar 

  22. Menciassi A, Stefanini C, Gorini S, et al. Locomotion of a legged capsule in the gastrointestinal tract: Theoretical study and preliminary technological result. In: Proceedings of IEEE International Conference Engineering in Medicine and Biology Society, San Francisco: IEEE, 2004. 2767–2770

    Google Scholar 

  23. Dario P, Menciassi A, Stefanini C, et al. Teleoperated endoscopic capsule equipped with active locomotion system. WIPO Patent WO 2005082248, 2005-09-09

  24. Quirini M, Menciassi A, Scapellato S, et al. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE/ASME Tracs Mechatron, 2008, 13: 169–179

    Article  Google Scholar 

  25. Carta R, Thone J, Puers R. A wireless power supply system for robotic capsular endoscopes. Sens Actuators A, 2010, 162: 177–183

    Article  Google Scholar 

  26. Cristofaro S, Stefanini N, Susilo E, et al. Electromagnetic wobble micromotor for microrobots axtuation. Sens Actuators A, 2010, 161: 234–244

    Article  Google Scholar 

  27. Ikeuchi K, Yoshinaka K, Hashimoto S, et al. Locomotion of medical micro robot with spiral ribs using mucus. In: Proceedings of IEEE International Symposium on Micro Machine and Human Science, 1996. 217–222

  28. Zhang Y, Yu H, Ruan X, et al. Kinematics characteristics of a new capsule-type micro robot in intestine. J Mech Eng, 2009, 45: 18–23

    Google Scholar 

  29. Saladin K S. Human Anatomy. Boston: McGraw-Hill Higher Education, 2005

    Google Scholar 

  30. Zhang Y, Jiang S, Zhang X, et al. A variable diameter capsule robot based on multiple wedge effects, IEEE/ASME Tracs Mechatron, 2011, 16: 241–254

    Article  MathSciNet  Google Scholar 

  31. Zhang Y, Wang D, Guo D, et al. Characteristics of magnetic torque of a capsule micro robot applied in intestine. IEEE Trans Magn, 2009, 45: 493–503

    Google Scholar 

  32. Zhang Y, Yue M, Guo D, et al. Characteristics of spatial magnetic torque of an intestine capsule micro robot with variable diameter. Sci China Ser E-Tech Sci, 2009, 52: 2079–2086

    Article  MATH  Google Scholar 

  33. Baiocchi C, Capelo A. Variational and Quasivariational Inequalities Applications to Free Boundary Problems. New York: John Wiley& Sons, 1984

    MATH  Google Scholar 

  34. Qiu Z G. Analytical solution for a class of quadrilateral stepped slider bearing of micropolar fluid. Lubrication Eng, 1989, 2: 13–20

    Google Scholar 

  35. Gent A N. Engineering with rubber — how to design rubber components. USA: Hanser Gardner Publications, 2001

    Google Scholar 

  36. SZERI A. Fluid Film Lubrication: Theory and Design. Cambridge: Cambridge University Press, 1998

    Book  MATH  Google Scholar 

  37. Pinkus O, Sternlicht B. Theory of Hydrodynamic Lubrication. New York: McGraw Hill Co., 1961

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongShun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, D., Ruan, X. et al. Control strategy for multiple capsule robots in intestine. Sci. China Technol. Sci. 54, 3098–3108 (2011). https://doi.org/10.1007/s11431-011-4483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4483-0

Keywords

Navigation