Skip to main content
Log in

The influence of temperature on the PLC effect in Al-Mg alloy

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An experimental investigation of the influence of temperature on the Portevin-Le Chatelier (PLC) effect in Al-Mg alloy is conducted. Under a certain strain rate, the PLC effect is present in the temperature range of 223–328 K. The serration amplitude increases monotonically with increasing temperature, whereas the behaviors of the serration period and the critical strain with temperature include a descending branch under corresponding low temperature range and an ascending branch under corresponding high temperature range. The analysis in relation with dynamic strain aging (DSA) indicates that the temperature plays an important role in the PLC effect by dictating the solubility and the diffusibility of solute atoms. Both the concentration and the diffusibility of solute atoms contribute to increasing the serration amplitude. Under the descending branch temperature range, the serration period mainly depends on the preparation phase and the dominant factor of critical strain is the velocity of dislocations. However, under the ascending branch temperature range, the serration period mainly depends on the pinning phase and the dominant factor of critical strain is the applied stress required for unpinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H W, Kang Y L, Zhang Z F, et al. Size effect on the fracture toughness of metallic foil. Int J Fracture, 2003, 123(3–4): 177–185

    Article  Google Scholar 

  2. Guo Z Q, Xie H M, Dai F L, et al. Compressive behavior of 64% porosity NiTi alloy: An experimental study. Mat Sci Eng A, 2009, 515(1–2): 117–130

    Article  Google Scholar 

  3. Xia R, Xu C X, Wu W W, et al. Microtensile tests of mechanical properties of nanoporous Au thin films. J Mater Sci, 2009, 44(17): 4728–4733

    Article  Google Scholar 

  4. Cottrell A H. A note on the Portevin-Le Chatelier effect. Philos Mag, 1953, 44(355): 829–832

    Google Scholar 

  5. Russell B. Repeated yielding in tin bronze alloys. Philos Mag, 1962, 8(88): 615–630

    Article  Google Scholar 

  6. Korbel A, Dybiec H. The problem of the negative strain rate sensitivity of metals under the Portevin-Le Chatelier deformation conditions. Acta Metall, 1980, 29: 89–93

    Google Scholar 

  7. Zhang Q C, Jiang Z Y, Jiang H F, et al. On the propagation and pulsation of Portevin-Le Chatelier deformation bands: An experimental study with digital speckle pattern metrology. Int J Plasticity, 2005, 21: 2150–2173

    Article  MATH  Google Scholar 

  8. Sleeseyk A W. Slow strain-hardening of ingot iron. Acta Metall, 1958, 6: 598–603

    Article  Google Scholar 

  9. Mulford R A, Kocks U F. New observations on the mechanisms of dynamic strain aging and of jerky flow. Acta Metall, 1979, 27: 1125–1134

    Article  Google Scholar 

  10. Nortmann A, Schwink C. Characteristics of dynamic strain ageing in binary f.c.c. copper alloys—I. Results on solid solutions of CuAl. Acta Meter, 1997, 45(5): 2043–2050

    Article  Google Scholar 

  11. Nortmann A, Schwink C. Characteristics of dynamic strain ageing in binary f.c.c. copper alloys—II. Comparison and analysis of experiments on CuAl and CuMn. Acta Meter, 1997, 45(5): 2051–2058

    Article  Google Scholar 

  12. Springer F, Nortmann A, Schwink C. A study of basic processes characterizing dynamic strain ageing. Phys Stat Sol A, 1998, 170: 63–81

    Article  Google Scholar 

  13. Klose F B, Ziegenbein A, weidenmüller J, et al. Portevin-Le Chatelier effect in strain and stress controlled tensile tests. Comp Mater Sci, 2003, 26: 80–86

    Article  Google Scholar 

  14. Miguel M C, Vespignani A, Zapperi S, et al. Intermittent dislocation flow in viscoplastic deformation. Nature, 2001, 410: 667–671

    Article  Google Scholar 

  15. Jiang Z Y, Zhang Q C, Jiang H F, et al. Spatial characteristics of the Portevin-Le Chatelier deformation bands in Al-4at%Cu polycrystals. Mat Sci Eng A, 2005, 403: 154–164

    Article  Google Scholar 

  16. Sun L, Zhang Q C, Cao P T. Influence of solute cloud and precipitates on the spatiotemporal characteristics of the Portevin-Le Chatelier effect in A2024 aluminum alloys. Chin Phys B, 2009, 18(8): 3500–3507

    Article  Google Scholar 

  17. Jiang H F, Zhang Q C, Wu X P, et al. Spatiotemporal aspects of the Portevin-Le Chatelier effect in annealed and solution-treated aluminum alloys. Scripta Mater, 2006, 54: 2041–2045

    Article  Google Scholar 

  18. Lu J Y, Jiang Z Y, Zhang Q C, et al. Size effect on serrated yielding in Al-Cu polycrystals (in Chinese). Acta Phys Sin, 2006, 55(7): 3558–3568

    Google Scholar 

  19. Abbadi M, Hähner P, Zeghloul A. On the characteristics of Portevin-Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing. Mat Sci Eng A, 2002, 337: 194–201

    Article  Google Scholar 

  20. Nagarjuna S, Anozie F N, Evans J T. Serrated yielding in Cu 1 wt-%Cd alloy. Mater Sci Tech, 2003, 19(12): 1661–1664

    Article  Google Scholar 

  21. Prasad K, Sarkar R, Ghosal P, et al. The influence of dynamic strain aging on the low cycle fatigue behavior of near alpha titanium alloy IMI 834. Mat Sci Eng A, 2008, 494: 227–231

    Article  Google Scholar 

  22. Nalawade S A, Sundararaman M, Kishore R, et al. The influence of aging on the serrated yielding phenomena in a nickel-base superalloy. Scripta Mater, 2008, 59(9): 991–994

    Article  Google Scholar 

  23. Murray J L. The Al-Mg (Aluminum-Magnesium) system. Bull Alloy Phase Diagrams, 1982, 3(1): 60–74

    Article  Google Scholar 

  24. Kubin L P, Estrin Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect. Acta Metall Mater, 1990, 38(5): 697–708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingChuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, S., Zhang, Q., Hu, Q. et al. The influence of temperature on the PLC effect in Al-Mg alloy. Sci. China Technol. Sci. 54, 1389–1393 (2011). https://doi.org/10.1007/s11431-011-4398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4398-9

Keywords

Navigation