Skip to main content
Log in

Investigation of loading and force sensing properties of a probe-type microforce sensor with force-distance curves

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the force-distance curves have been employed to investigate the force sensing properties of the probe-type microforce sensors. In the preliminary studies, two kinds of probe-type microforce sensors have been used to load the objects with dry and wetted surfaces. One is a developed piezoresistive cantilever force sensor with sensitivity of 35 μN/V and the other an atomic force microscope (AFM) cantilever beam probe with sensitivity of 10.4 nN/V. The force outputs corresponding to the regimes of approaching, indenting, and loading are obtained, and the properties of the stability in the approaching regime of the sensors, local mechanical behavior of the tested objects in the indenting regime, and the force sensing of the global samples are analyzed. Experimental results of this analysis are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis H E, Troxell G E, Hauck G F W. The Testing of Engineering Materials. In: 4th ed. New York: McGraw-Hill, 1982. 68–178

    Google Scholar 

  2. Sharpe W N, Yuan B, Edwards R L. A new technique for measuring the mechanical properties of thin films. J Microelectromech Syst, 1997, 6(3): 193–199

    Article  Google Scholar 

  3. Ogawa H, Suzuki K, Kaneko S, et al. Measurements of mechanical properties of microfabricated thin films. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1997. 430–435

  4. Haque M A, Saif M T A. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech, 2002, 42(1): 123–128

    Article  Google Scholar 

  5. Li X, Yang Y, Wei C. In situ and real-time tensile testing of thin films using double-field-of-view electronic speckle pattern interferometry. Meas Sci Technol, 2004, 15(1): 75–83

    Article  Google Scholar 

  6. Lu S, Guo Z, Ding W, et al. In situ mechanical testing of templated carbon nanotubes. Rev Sci Instrum, 2006, 77(12): 125101

    Article  Google Scholar 

  7. Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971–1975

    Article  Google Scholar 

  8. Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287: 637–640

    Article  Google Scholar 

  9. Tan E P S, Goh C N, Sow C H, et al. Tensile test of a single nanofiber using an atomic force microscope tip. Appl Phys Lett, 2005, 86(7): 073115

    Article  Google Scholar 

  10. Ding W, Calabri L, Kohlhaas K M, et al. Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp Mech, 2007, 47(1): 25–36

    Article  Google Scholar 

  11. Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  Google Scholar 

  12. Kuzumaki T, Mitsuda Y. Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Jpn J Appl Phys, 2006, 45(1A): 364–368

    Article  Google Scholar 

  13. Tanikawa T, Kawai M, Koyachi N, et al. Force control system for autonomous micro manipulation. Proc IEEE Int Conf on Robot and Automat, 2001. 610–615

  14. Fung C K M, Elhajj I, Li W J, et al. A 2-D PVDF force sensing system for micromanipulation and micro-assembly. Proc IEEE Int Conf on Robot and Automat, 2002. 1489–1494

  15. Sun Y, Wan K T, Roberts K P, et al. Mechanical property characterization of mouse zona pellucida. IEEE Trans Nanobiosci, 2003, 2(4): 279–286

    Article  Google Scholar 

  16. Sun Y, Fry S N, Potasek D P, et al. Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. J Microelectromech Syst, 2005, 14(1): 4–11

    Article  Google Scholar 

  17. Bartsch M S, Federle W, Full R J, et al. Small insect measurement using a custom MEMS force sensor. IEEE Int Conf on Transducers, Solid-State Sensors, Actuators and Microsystems, 2003. 1039–1042

  18. Behrens I, Doering L, Peiner E. Piezoresistive cantilever as portable micro force calibration standard. J Micromech Microeng, 2003, 13(4): S171–S177

    Article  Google Scholar 

  19. Lu Z, Luo H, Chen P C Y, et al. An integrated probe sensor for microforce measurement. Meas Sci Technol, 2006, 17(4): 869–875

    Article  Google Scholar 

  20. Li X, Su D, Zhang Z. A novel technique of microforce sensing and loading. Sens Actuator A-Phys, 2009, 153(1): 13–23

    Article  Google Scholar 

  21. Su D, Li X. Fractionized calibration of the sample stage used in an AFM-probe mechanical testing system. Opt Lasers Eng, 2010, 48(11): 1076–1081

    Article  MathSciNet  Google Scholar 

  22. Sun C. Investigation of the performance of a microcantilever force sensor and its dependence on the structural scale (in Chinese). Bachelor Thesis. Tsinghua: Tsinghua University, 2010

    Google Scholar 

  23. Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surf Sci Rep, 1999, 34(1–3): 1–104

    Article  Google Scholar 

  24. http://www.memsnet.org/materials

  25. http://www2.dupont.com/Tedlar_PVF_Film/en_US/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiDe Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Su, D. & Li, X. Investigation of loading and force sensing properties of a probe-type microforce sensor with force-distance curves. Sci. China Technol. Sci. 54, 1362–1370 (2011). https://doi.org/10.1007/s11431-011-4384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4384-2

Keywords

Navigation