Skip to main content
Log in

Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The stationary probability density function (PDF) solution to nonlinear ship roll motion excited by Poisson white noise is analyzed. Subjected to such random excitation, the joint PDF solution to the roll angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the exponential-polynomial closure (EPC) method is adopted. With the EPC method, the PDF solution is assumed to be an exponential-polynomial function of state variables. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. The problem of determining the unknown parameters in the approximate PDF finally results in solving simultaneous nonlinear algebraic equations. Both slight and high nonlinearities are considered in the illustrative examples. The analysis shows that when a second-order polynomial is taken, the result of the EPC method is the same as the one given by the equivalent linearization (EQL) method. The EQL results differ significantly from the simulated results in the case of high nonlinearity. When a fourth-order or sixth-order polynomial is taken, the results of the EPC method agree well with the simulated ones, especially in the tail regions of the PDF. This agreement is observed in the cases of both slight and high nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. To C W S, Chen Z. First passage time of nonlinear ship rolling in narrow band non-stationary random seas. J Sound Vib, 2008, 309(1–2): 197–209

    Article  Google Scholar 

  2. Roberts J B, Vasta M. Markov modeling and stochastic identification for nonlinear ship rolling in random waves. Phil Trans R Soc Lond A, 2000, 358: 1917–1941

    Article  MATH  MathSciNet  Google Scholar 

  3. Roberts J B, Dacunha N M C. The roll motion of a ship in random beam waves: comparison between theory and experiment. J Ship Res, 1985, 29(2): 112–126

    Google Scholar 

  4. St. Denis M, Pierson W J. On the motions of ships in confused seas. Trans SNAME, 1953, 61: 280–357

    Google Scholar 

  5. Flower J O, Mackerdichian S K. Application of the describing function technique to nonlinear rolling in random waves. Int Shipbuilding Progr, 1978, 25: 14–18

    Google Scholar 

  6. To C W S. On the stochastic averaging method of energy envelope. J Sound Vib, 1998, 212(1): 165–172

    Article  MathSciNet  Google Scholar 

  7. Vassilopoulos C. The application of statistical theory of nonlinear systems to ship motion performance in random seas. Int Shipbuild Progr, 1967, 14: 54–65

    Google Scholar 

  8. Haddara M R, Zhang Y. On the joint probability density function of non-linear rolling motion. J Sound Vib, 1994, 169(4): 562–569

    Article  Google Scholar 

  9. Hsieh S R, Troesch A W, Shaw S W. A nonlinear probabilistic method for predicting vessel capsizing in random beam seas. Proc R Soc Lond A, 1994, 446: 195–211

    Article  Google Scholar 

  10. Jiang C B, Troesch A W, Shaw S W. Highly nonlinear rolling motion of biased ships in random beam seas. J Ship Res, 1996, 40(2): 125–135

    Google Scholar 

  11. Haddara M R. A modified approach for the application of the Fokker-Planck equation to nonlinear ship motions in random waves. Int Shipbuild Progr, 1974, 21: 283–288

    Google Scholar 

  12. Moshchuk N K, Ibrahim R A, Khasminskii R Z, et al. Asymptotic expansion of ship capsizing in random sea waves-I. First-order approximation. Int J Non-linear Mech, 1995, 30(5): 727–740

    Article  MATH  MathSciNet  Google Scholar 

  13. Moshchuk N K, Khasminskii R Z, Ibrahim R A, et al. Asymptotic expansion of ship capsizing in random sea waves-II. Second-order approximation. Int J Non-linear Mech, 1995, 30(5): 741–757

    Article  MathSciNet  Google Scholar 

  14. Roberts J B. System response to random impulses. J Sound Vib, 1972, 24(1): 23–34

    Article  MATH  Google Scholar 

  15. Pirrotta A. Multiplicative cases from additive cases: Extension of Kolmogorov-Feller equation to parametric Poisson white noise processes. Probab Eng Mech, 2007, 22(2): 127–135

    Article  Google Scholar 

  16. Vasta M. Exact stationary solution for a class of non-linear systems driven by a non-normal delta-correlated process. Int J Non-linear Mech, 1995, 30(4): 407–418

    Article  MATH  MathSciNet  Google Scholar 

  17. Proppe C. Exact stationary probability density functions for non-linear systems under Poisson white noise excitation. Int J Non-linear Mech, 2003, 38(4): 557–564

    Article  MATH  MathSciNet  Google Scholar 

  18. Cai G Q, Lin Y K. Response distribution of non-linear systems excited by non-Gaussian impulsive noise. Int J Non-linear Mech, 1992, 27(6): 955–967

    Article  MATH  MathSciNet  Google Scholar 

  19. Cai G Q, Lin Y K. On exact stationary solutions of equivalent non-linear stochastic systems. Int J Non-linear Mech, 1988, 23(4): 315–325

    Article  MATH  MathSciNet  Google Scholar 

  20. Köylüoğlu H U, Nielsen S R K, Iwankiewicz R. Reliability of non-linear oscillators subject to Poisson driven impulses. J Sound Vib, 1994, 176(1): 19–33

    Article  MATH  Google Scholar 

  21. Köylüoğlu H U, Nielsen S R K, Iwankiewicz R. Response and reliability of Poisson-driven systems by path integration. ASCE J Eng Mech, 1995, 121(1): 117–130

    Article  Google Scholar 

  22. Köylüoğlu H U, Nielsen S R K, Çakmak A Ş. Fast cell-to-cell mapping (path integration) for nonlinear white noise and Poisson driven systems. Struct Safety, 1995, 17(3): 151–165

    Article  Google Scholar 

  23. Iwankiewicz R, Nielsen S R K. Solution techniques for pulse problems in non-linear stochastic dynamics. Probab Eng Mech, 2000, 15(1): 25–36

    Article  Google Scholar 

  24. Dunne J F, Ghanbari M. Extreme-value prediction for non-linear stochastic oscillators via numerical solutions of the stationary FPK equation. J Sound Vib, 1997, 206(5): 697–724

    Article  Google Scholar 

  25. Wojtkiewicz S F, Johnson E A, Bergman L A, et al. Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov equation by a spectral finite difference method. Comput Methods Appl Mech Engrg, 1999, 168(1–4): 73–89

    Article  MATH  Google Scholar 

  26. Tylikowski A, Marowski W. Vibration of a non-linear single degree of freedom system due to Poissonian impulse excitation. Int J Non- linear Mech, 1986, 21(3): 229–238

    Article  MATH  MathSciNet  Google Scholar 

  27. Grigoriu M. Equivalent linearization for Poisson white noise input. Probab Eng Mech, 1995, 10(1): 45–51

    Article  Google Scholar 

  28. Sobiechowski C, Socha L. Statistical linearization of the Duffing oscillator under non-Gaussian external excitation. J Sound Vib, 2000, 231(1): 19–35

    Article  MathSciNet  Google Scholar 

  29. Proppe C. Equivalent linearization of MDOF systems under external Poisson white noise excitation. Probab Eng Mech, 2002, 17(4): 393–399

    Article  Google Scholar 

  30. Iwankiewicz R, Nielsen S R K, Thoft-Christensen P. Dynamic response of non-linear systems to Poisson-distributed pulse trains: Markov approach. Struct Safety, 1990, 8(1–4): 223–238

    Article  Google Scholar 

  31. Iwankiewicz R, Nielsen S R K. Dynamic response of non-linear systems to Poisson-distributed random impulses. J Sound Vib, 1992, 156(3): 407–423

    Article  Google Scholar 

  32. Di Paola M, Falsone G. Non-linear oscillators under parametric and external Poisson pulses. Nonlinear Dyn, 1994, 5(3): 337–352

    Article  Google Scholar 

  33. Er G K, Iu V P. Probabilistic solutions to nonlinear random ship roll motion. ASCE J Eng Mech, 1999, 125(5): 570–574

    Article  Google Scholar 

  34. Er G K. A new non-Gaussian closure method for the PDF solution of nonlinear random vibrations. In: 12th Engrg Mech Conference. San Diego, ASCE, 1998

    Google Scholar 

  35. Er G K. An improved closure method for analysis of nonlinear stochastic systems. Nonlinear Dyn, 1998, 17(3): 285–297

    Article  MATH  MathSciNet  Google Scholar 

  36. Er G K, Iu V P. Stochastic response of based-excited Coulomb oscillator. J Sound Vib, 2000, 233(1): 81–92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiTao Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Er, G., Zhu, H., Iu, V. et al. Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise. Sci. China Technol. Sci. 54, 1121–1125 (2011). https://doi.org/10.1007/s11431-011-4342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4342-z

Keywords

Navigation