Skip to main content

A study of the operating parameters and barrier thickness of Al0.08In0.08Ga0.84N/Al x In y Ga1−xy N double quantum well laser diodes

Abstract

The operating parameters such as the internal quantum efficiency (ηi), internal loss (αi) and transparent threshold current density (J 0) of double quantum well laser diodes were investigated and identified using the program, Integrated System Engineering-Technical Computer Aided Design (ISE-TCAD). Various thicknesses (6, 7, 8, 10, 12 nm) of Al x In y Ga1−xy N barriers with (3 nm) Al0.08In0.08Ga0.84N wells as an active region were studied. The lowest threshold current (I th), and the highest output power (P op) were 116 mA and 196 mW respectively, at barriers thickness of 6 nm, Al mole fraction of 10% and In mole fraction of 1%, at an emission wavelength of 359.6 nm.

This is a preview of subscription content, access via your institution.

References

  1. Thahab S M, Abu Hassan H, Hassan Z. InAlGaN quaternary multi-quantum wells UV laser diode performance and characterization. World Academy Sci, Eng Technol, 2009, 55:352–355

    Google Scholar 

  2. Nishida T, Saito H, Kobayashi N. Efficient and high-power AlGaN based ultraviolet light-emitting diode grown on bulk GaN. Appl Phys Lett, 2001, 79:711–712

    Article  Google Scholar 

  3. Skierbiszewski C, Perlin P, Grzegory I, et al. High power blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 2005, 20:809–813

    Article  Google Scholar 

  4. Hirayama H. Quaternary InAlGaN-based high-efficiency ultraviolet light emitting Diodes. J Appl Phys, 2005, 97:091101-1–091101-19

    Google Scholar 

  5. Cho K H, Lee H K, Kim W S, et al. Influence of growth temperature and reactor pressure on microstructural and optical properties of InAlGaN quaternary epilayers. J Cryst Growth, 2004, 267:67–73

    Article  Google Scholar 

  6. Chen C H, Huang L Y, Chen Y F, et al. Mechanism of enhanced luminescence in InxAlyGa1−xy N quaternary alloys. Appl Phys Lett, 2002, 80:1397–1399

    Article  Google Scholar 

  7. Yasan A, McClintock R, Mayes K, et al. Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire. Appl Phys Lett, 2002, 81:2151–2153

    Article  Google Scholar 

  8. Monroy E, Gogneau N, Jalabert D, et al. In incorporation during the growth of quaternary III-nitride compounds by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2003, 82:2242–2244

    Article  Google Scholar 

  9. Nakamura S, Senoh M, Nagahama S, et al. InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates with a fundamental transverse mode. Jpn J Appl Phys, 1998, 37:L1020–L1022

    Article  Google Scholar 

  10. Chang J Y, Kuo Y K. Simulation of blue InGaN quantum well lasers. J Appl Phys, 2003, 93:4992–4998

    Article  Google Scholar 

  11. Pearton J, Zolper J C, Shul R J, et al. GaN processing, defects, and devices. J Appl Phys, 1999, 86: 1.371145

    Article  Google Scholar 

  12. Nakamura S, Fasol G. The Blue Laser Diode. Berlin: Springer Verlag, 1997

    Google Scholar 

  13. Liu J P, Zhang B S, Wu M, et al. Structural and optical properties of quaternary AlInGaN epilayers grown by MOCVD with various TMGa flows. J Cryst Growth, 2004, 260:388–393

    Article  Google Scholar 

  14. Thahab S M, Abu Hassan H, Hassan Z. Performance and optical characteristic of InGaN MQWs laser diodes. Opt Express, 2007, 15:2380–2390

    Article  Google Scholar 

  15. Thahab S M, Abu Hassan H, Hassan Z. InGaN/GaN laser diode characterization and quantum well number effect. Chin Opt Lett, 2009, 7:226–230

    Article  Google Scholar 

  16. Liu Y, Egawa T, Ishikawa H, et al. J Crystal Growth, 2003, 259:245–251

    Article  Google Scholar 

  17. Kuo Y K, Yen S H, Chen J R. Numerical simulation of AlInGaN ultraviolet light-emitting diodes. In: Piprek J, Wang J J, eds. Optoelectronic Devices, Physics, Fabrication, Application III. Proceedings of SPIE, 2006. 6368–636812

  18. Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping. Appl Phys Lett, 1996, 69:3737–3739

    Article  Google Scholar 

  19. Chen J R, Ko T S, Su P Y, et al. Numerical study on optimization of active layer structure for GaN/AlGaN multiple-quantum well laser diode. J Lightwave Technol, 2008, 26:3155–3165

    Article  Google Scholar 

  20. Fox M, Ispasoiu R. Quantum Wells, Superlattice and Band-Gap Engineering. part D-42. Springer handbook of Electronic and Photonic. Heidelberg: Springer Science+Business Media, Inc, 2006. 1021–1038

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Ghazai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghazai, A.J., Thahab, S.M., Abu Hassan, H. et al. A study of the operating parameters and barrier thickness of Al0.08In0.08Ga0.84N/Al x In y Ga1−xy N double quantum well laser diodes. Sci. China Technol. Sci. 54, 47–51 (2011). https://doi.org/10.1007/s11431-010-4183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4183-1

Keywords

  • AlInGaN
  • quaternary
  • UV laser diode
  • quantum well
  • barrier thickness