Thahab S M, Abu Hassan H, Hassan Z. InAlGaN quaternary multi-quantum wells UV laser diode performance and characterization. World Academy Sci, Eng Technol, 2009, 55:352–355
Google Scholar
Nishida T, Saito H, Kobayashi N. Efficient and high-power AlGaN based ultraviolet light-emitting diode grown on bulk GaN. Appl Phys Lett, 2001, 79:711–712
Article
Google Scholar
Skierbiszewski C, Perlin P, Grzegory I, et al. High power blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 2005, 20:809–813
Article
Google Scholar
Hirayama H. Quaternary InAlGaN-based high-efficiency ultraviolet light emitting Diodes. J Appl Phys, 2005, 97:091101-1–091101-19
Google Scholar
Cho K H, Lee H K, Kim W S, et al. Influence of growth temperature and reactor pressure on microstructural and optical properties of InAlGaN quaternary epilayers. J Cryst Growth, 2004, 267:67–73
Article
Google Scholar
Chen C H, Huang L Y, Chen Y F, et al. Mechanism of enhanced luminescence in InxAlyGa1−x−y
N quaternary alloys. Appl Phys Lett, 2002, 80:1397–1399
Article
Google Scholar
Yasan A, McClintock R, Mayes K, et al. Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire. Appl Phys Lett, 2002, 81:2151–2153
Article
Google Scholar
Monroy E, Gogneau N, Jalabert D, et al. In incorporation during the growth of quaternary III-nitride compounds by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2003, 82:2242–2244
Article
Google Scholar
Nakamura S, Senoh M, Nagahama S, et al. InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates with a fundamental transverse mode. Jpn J Appl Phys, 1998, 37:L1020–L1022
Article
Google Scholar
Chang J Y, Kuo Y K. Simulation of blue InGaN quantum well lasers. J Appl Phys, 2003, 93:4992–4998
Article
Google Scholar
Pearton J, Zolper J C, Shul R J, et al. GaN processing, defects, and devices. J Appl Phys, 1999, 86: 1.371145
Article
Google Scholar
Nakamura S, Fasol G. The Blue Laser Diode. Berlin: Springer Verlag, 1997
Google Scholar
Liu J P, Zhang B S, Wu M, et al. Structural and optical properties of quaternary AlInGaN epilayers grown by MOCVD with various TMGa flows. J Cryst Growth, 2004, 260:388–393
Article
Google Scholar
Thahab S M, Abu Hassan H, Hassan Z. Performance and optical characteristic of InGaN MQWs laser diodes. Opt Express, 2007, 15:2380–2390
Article
Google Scholar
Thahab S M, Abu Hassan H, Hassan Z. InGaN/GaN laser diode characterization and quantum well number effect. Chin Opt Lett, 2009, 7:226–230
Article
Google Scholar
Liu Y, Egawa T, Ishikawa H, et al. J Crystal Growth, 2003, 259:245–251
Article
Google Scholar
Kuo Y K, Yen S H, Chen J R. Numerical simulation of AlInGaN ultraviolet light-emitting diodes. In: Piprek J, Wang J J, eds. Optoelectronic Devices, Physics, Fabrication, Application III. Proceedings of SPIE, 2006. 6368–636812
Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping. Appl Phys Lett, 1996, 69:3737–3739
Article
Google Scholar
Chen J R, Ko T S, Su P Y, et al. Numerical study on optimization of active layer structure for GaN/AlGaN multiple-quantum well laser diode. J Lightwave Technol, 2008, 26:3155–3165
Article
Google Scholar
Fox M, Ispasoiu R. Quantum Wells, Superlattice and Band-Gap Engineering. part D-42. Springer handbook of Electronic and Photonic. Heidelberg: Springer Science+Business Media, Inc, 2006. 1021–1038
Chapter
Google Scholar