Skip to main content
Log in

Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Al-Ni alloys have better glass forming ability (GFA) than other Al-based alloys. However, the relationship among the atomic arrangement, glass transition, packing density and composition hasn’t been systematically studied. In this paper the ab initio molecular dynamics simulation (AIMD) was performed on the atom packing and density of Al x Ni100−x (x=80, 83, 85, 86, 87 and 90) alloys. The pair correlation function and Voronoi tessellation indicated that there are obvious topological and chemical short-range orders in these alloys. The topological structure consists of Al-centered icosahedra like and Ni-centered tri-capped trigonal prism (TTP) like polyhedra. There is strong chemical short-range ordering between Al and Ni atoms indicated by the bond-length of Al-Ni pair shorter than the sum of the radii of Al and Ni atoms, which increases with the increasing of Ni content. It is shown that the densities of amorphous alloys don’t agree with the linear law with a peak at x=85. Based on the features of the structure and density, it is concluded that Al-Ni alloys at x=84–86 have high GFA, which can be extended to multi-component Al-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzuki R O, Komatsu Y, Kobayashi K E, et al. Formation and crystallization of Al-Fe-Si amorphous alloys. J Mater Sci, 1983, 18(4): 1195–1201

    Article  Google Scholar 

  2. Inoue A, Bizen Y, Kimura H M, et al. Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing. J Mater Sci Lett, 1987, 6(7): 811–814

    Article  Google Scholar 

  3. He Y, Poon S J, Shiflet G J. Synthesis and properties of metallic glasses that contain aluminum. Science, 1988, 241(2): 1640–1642

    Article  Google Scholar 

  4. Zhu A W, Shiflet G J, Miracle D B. Glass forming ranges of Al-rare earth metal alloys: Thermodynamic and kinetic analysis. Scripta Mater, 2004, 50(7): 987–991

    Article  Google Scholar 

  5. Zhu A W, Poon S J, Shiflet G J. On glass formability of Al-Gd-Ni(Fe). Scripta Mater, 2004, 50(12): 1451–1455

    Article  Google Scholar 

  6. Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull, 2001, 36(12): 2183–2198

    Article  Google Scholar 

  7. Guo F Q, Enouf S, Poon S J. Formation of ductile Al based metallic glasses without rare-earth elements. Philos Mag Lett, 2001, 81(3): 203–211

    Article  Google Scholar 

  8. Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-mediumrange order in metallic glasses. Nature, 2006, 439(26): 419–425

    Article  Google Scholar 

  9. Inoue A, Masumoto T. X-ray diffraction study of amorphous Al77.5Mn22.5 and Al56Si30Mn14 alloys. J Mater Sci, 1988, 23(2): 753–756

    Article  Google Scholar 

  10. Zhang L, Wu Y S, Bian X F, et al. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys. J Non-Cryst Solids, 2000, 262(1–3): 169–176

    Article  Google Scholar 

  11. Qin J Y, Bian X F, Sliusarenko S I, et al. Pre-peak in the structure factor of liquid Al-Fe alloy. J Phys: Conden Matter, 1998, 10(6): 1211

    Article  Google Scholar 

  12. Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog in Mater Sci, 1998, 43(5): 365–520

    Article  Google Scholar 

  13. Rachek O P. X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfests formula. J Non-Cryst Solid, 2006, 352(36–37): 3781–3786

    Article  Google Scholar 

  14. Ahn K, Louca D, Poon S J, et al. Topological and chemical ordering induced by Ni and Nd in Al87Ni7Nd6 metallic glass. Phys Rev B, 2004, 70(22): 224103

    Article  Google Scholar 

  15. Jakse N, le Bacq O, Pasturel A. Chemical and icosahedral short-range orders in liquid and undercooled Al80Mn20 and Al80Ni20 alloys: A first-principles-based approach. J Chem Phys, 2005, 123(10): 104508

    Article  Google Scholar 

  16. Li R Y, Qin J Y, Gu T K, et al. Structure of liquid Al80Mn20 alloy by reverse Monte Carlo simulation. J Non-Cryst Solid, 2008, 354(15–16): 1736–1739

    Article  Google Scholar 

  17. Li H, Ding F, Wang J L, et al. Structural studies of clusters in melt of FeAl compound. J Chem Phys, 2001, 114(14): 6413

    Article  Google Scholar 

  18. Gu T K, Qin J Y, Bian X F. Correlation between local structure of melts and glass forming ability for Al-based alloys: A first-principles study. Appl Phys Lett, 2007, 91: 081907

    Article  Google Scholar 

  19. Inoue A, Matsumoto N, Masumoto T. Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass forming capacity, Mater Trans-JIM, 1990, 31: 493–500

    Google Scholar 

  20. Sanders W S, Warner J S, Miracle D B. Stability of Al-rich glasses in the Al-La-Ni system. Intermetallics, 2006, 14: 348

    Article  Google Scholar 

  21. Horbach J, Das S K, Griesche A, et al. Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment. Phys Rev B, 2007, 75: 174304

    Article  Google Scholar 

  22. Wang L, Wang Y Q, Peng C X, et al. Medium-range structural order in liquid Ni20Al80 alloy: Experimental and molecular dynamics studies. Phys Lett A, 2006, 350(5–6): 405–409

    Article  Google Scholar 

  23. Miracle D B, Senkov O N. A geometric model for atomic configurations in amorphous Al alloys. J Non-Cryst Solid, 2003, 319: 174–191

    Article  Google Scholar 

  24. Sheng H W, Cheng Y Q, Lee P L, et al. Atomic packing in multicomponent aluminum-based metallic glasses. Acta Mater, 2008, 56: 6264–6272

    Article  Google Scholar 

  25. Li G Q, Borisenko K B, Chen Y X. Local structure variations in Al89La6Ni5 metallic glass. Acta Mater, 2009, 57(3): 804–811

    Article  Google Scholar 

  26. Bernal J D. A geometrical approach to the structure of liquids. Nature, 1959, 183(4655): 141–147

    Article  Google Scholar 

  27. Miracle B D. A structural model for metallic glasses. Nat Mater, 2004, 3(10): 697–702

    Article  Google Scholar 

  28. Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006, 439: 419–425

    Article  Google Scholar 

  29. Li Y, Guo Q, Kalb J. A, et al. Matching glass-forming ability with the density of the amorphous phase. Science, 2008, 322: 1816–1819

    Article  Google Scholar 

  30. Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55(22): 2471–2474

    Article  Google Scholar 

  31. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6(1): 15–50

    Article  Google Scholar 

  32. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16): 11169–11186

    Article  Google Scholar 

  33. Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953–17979

    Article  Google Scholar 

  34. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59(3): 1758–1775

    Article  Google Scholar 

  35. Wang Y, Perdew J P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B, 1991, 44(24): 13298–13307

    Article  Google Scholar 

  36. Nose S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81(1): 511–519

    Article  Google Scholar 

  37. Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev, 1967, 159(1): 98–103

    Article  Google Scholar 

  38. Shimoli M. Liquid Metals. Washington: Academic Press, 1977

    Google Scholar 

  39. Mattern N, Kühn U, Hermann H, et al. Short-range order of Zr62−x TixAl10Cu20Ni8 bulk metallic glasses. Acta Mater, 2002, 50: 305–314

    Article  Google Scholar 

  40. Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Oxford University Press, 1989

    Google Scholar 

  41. Maret M, Pomme T, Pasturel A. Structure of liquid Al80Ni20 alloy. Phys Rev B, 1990, 42(3): 1598–1604

    Article  Google Scholar 

  42. Finney J L. Random packings and the structure of simple liquids: The geometry of random close packing. Proc R Soc Lond A, 1970, 319(1539): 479–493

    Article  Google Scholar 

  43. Nelson D R. Order, frustration, and defects in liquids and glasses. Phys Rev B, 1983, 28: 5515–5535

    Article  MathSciNet  Google Scholar 

  44. Bernal J D. Geometry of the structure of monatomic liquids. Nature, 1960, 185(4707): 68–70

    Article  Google Scholar 

  45. Zalewski W, Antonowicz J, Bacewicz R. Local atomic order in Al-based metallic glasses studied using XAFS method. J Alloy Compd, 2009, 468: 40–46

    Article  Google Scholar 

  46. Hsieh H Y, Toby B H, He Y. Atomic structure of amorphous Al90FexCe10−x . J Mater Res, 1990, 5(12): 2807–2812

    Article  Google Scholar 

  47. Cowley J M. An approximate theory of order in alloys. Phys Rev, 1950, 77(5): 669–675

    Article  MATH  Google Scholar 

  48. Widom M, Lehyani A I, Moriarty J A. First-principles interatomic potentials for transition-metal aluminides. Phys Rev B, 2000, 62(6): 3648–3657

    Article  Google Scholar 

  49. Mukherjee S, Schroers J, Zhou Z. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater, 2004, 52(12): 3689–3695

    Article  Google Scholar 

  50. Yokoyama Y, Ishikawa T, Okada J T. Volume and viscosity of Zr-Cu-Al glass-forming liquid alloys. J Non-Cryst Solid, 2009, 355: 317–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiDong Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Hui, X., Chen, X. et al. Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys. Sci. China Technol. Sci. 53, 3175–3182 (2010). https://doi.org/10.1007/s11431-010-4173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4173-3

Keywords

Navigation