Skip to main content
Log in

Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Large scale molecular dynamics simulations of nanomachining and stretching of single crystal copper are performed to analyze the machining process’ influence on the material’s mechanical properties. The simulation results show that the machining process will introduce interfacial defects inside the specimen and enhance the compressive stress beneath the surface. Generally speaking, interfacial defects lead to the decrease of the strength limit, while residue compressive stress can enhance the elastic limit and even the strength limit. Various machining parameters are adopted to investigate their influence on the mechanical behavior of machined specimen. Lower cutting speed and smaller cutting depth lead to less defects and greater residue compressive stress, which brings about better mechanical properties. The elastic limit increases by 36.8% under the cutting depth of 0.73 nm and decreases by 21.1% under the cutting depth of 1.46 nm. The strength limit increases by 7.7% under the cutting speed of 100 m/s and decreases by 28.2% under the cutting speed of 300 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng C, Sansoz F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett, 2009, 9(4): 1517–1522

    Article  Google Scholar 

  2. Dai L, Sow C H, Lim C T, et al. Numerical investigations into the tensile behavior of TiO2 nanowires: structural deformation, mechanical properties, and size effects. Nano Lett, 2009, 9(2): 576–582

    Article  Google Scholar 

  3. Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical behavior of nanoporous Au. Nano Lett, 2006, 6(10): 2379–2382

    Article  Google Scholar 

  4. Schiotz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper. Science, 2003, 301:1357

    Article  Google Scholar 

  5. Li L, Ghoniem N M. Twin-size effects on the deformation of nanotwinned copper. Phys Rev B, 2009, 79: 075444

    Article  Google Scholar 

  6. Olsson P A T, Melin S, Persson C. Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams. Phys Rev B, 2007, 76: 224112

    Article  Google Scholar 

  7. Cao A J, Wei Y G, Ma E. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Phys Rev B, 2008, 77: 195429

    Article  Google Scholar 

  8. Szlufarska I, Nakano A, Vashishta P. A cross over in mechanical response of nanocrystalline ceramics. Science, 2005, 309: 911

    Article  Google Scholar 

  9. Chang W J. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron Eng, 2003, 65: 239–246

    Article  Google Scholar 

  10. Wu H A, Liu G R, Wang J S. Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes. Modelling Simul Mater Sci Eng, 2004, 12: 225–233

    Article  Google Scholar 

  11. Yang X H, Zhou T, Chen C Y. Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void. Comput Mater Sci, 2007, 40: 51–56

    Article  Google Scholar 

  12. Yang Y, Baker I. The influence of vacancy concentration on the mechanical behavior of Fe-40Al. Intermetallics, 1998, 6(3): 167–175

    Article  Google Scholar 

  13. Pugno, Nicola M. Young’s modulus reduction of defective nanotubes. Appl Phys Lett, 2007, 90(4): 043106

    Article  Google Scholar 

  14. Xu D S, Hu Q M, Lu J M, et al. Point defects and mechanical behaviour of titanium alloys and intermetallic compounds. J Phys: Confer Ser, 2006, 29: 220–227

    Article  Google Scholar 

  15. Duan H L, Wang J, Huang Z P, et al. Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J Mech Phys Solids, 2005, 53(7): 1574–1596

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhou T, Yang X Y, Chen C Y. Quasicontinuum simulation of single crystal nano-plate with a mixed-mode crack. Int J Solids Struct, 2009, 46(9): 1975–1980

    Article  Google Scholar 

  17. Liang Y C, Chen J X, Chen M J, et al. Integrated md simulation of scratching and shearing of 3d nanostructure. Comput Mater Sci, 2008, 43: 1130–1140

    Article  Google Scholar 

  18. Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embeddedatom calculations. Phys Rev B, 2001, 63: 224106

    Article  Google Scholar 

  19. Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation. Phys Rev B, 1998, 58: 11085

    Article  Google Scholar 

  20. Pei Q X, Lu C, Lee H P, et al. Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett, 2009, 4: 444–451

    Article  Google Scholar 

  21. Diao J, Gall K, Dunn M L, et al. Atomistic simulations of the yielding of gold nanowires. Acta Mater, 2006, 54: 643

    Article  Google Scholar 

  22. Nisitani H, Noda N A. Stress concentration of a cylindrical bar with a V-shaped circumferential groove under torsion, tension or bending. Eng Fracture Mech, 1984, 20: 743–766

    Article  Google Scholar 

  23. Gao H J, Ji B H, Jager I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc Natl Acad Sci USA, 2003, 100: 5597–5600

    Article  Google Scholar 

  24. Brandl C, Derlet P M, Swygenhoven H V. General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys Rev B, 2007, 76: 054124

    Article  Google Scholar 

  25. Datta A, Waghmare U, Ramamurty U. Structure and stacking faults in layered Mg-Zn-Y alloys: A first-principles study. Acta Mater, 2008, 56(11): 2531–2539

    Article  Google Scholar 

  26. Schall P, Cohen I, Weitz D A. visualizing dislocation nucleation by indenting collodial crystals. Nature, 2006, 440: 04557

    Article  Google Scholar 

  27. Kobayashi M, Matsui T, Murakami Y. Mechanism of creation of compressive residual stress by shot peening. Int J Fatigue, 1998, 20(5): 351–357

    Article  Google Scholar 

  28. Dahlman P, Gunnberg F, Jacobson M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol, 2004, 147(2): 181–184

    Article  Google Scholar 

  29. Matsumoto Y, Hashimoto F, Lahoti G. Surface integrity generated by precision hard turning. Manuf Technol, 1999, 48(1): 59–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingJun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Xiao, G., Chen, J. et al. Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper. Sci. China Technol. Sci. 53, 3161–3167 (2010). https://doi.org/10.1007/s11431-010-4122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4122-1

Keywords

Navigation