Skip to main content
Log in

Evaluating the effect of dislocation on the photovoltaic performance of metamorphic tandem solar cells

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns, AM1.5d) was theoretically calculated. An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708, 1.194, and 0.67 eV. A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure’s efficiency by regarding dislocation as minority-carrier recombination center. The results showed that only when dislocation density was less than 1.6×106 cm−2, can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination. In addition, we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system, and used it as guidance for the choice of the proper cell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guter W, Schone J, Philipps S P, et al. Current-matched triple-junction solar cell reaching 41.1% conversioin efficiency under concentrated sunlight. Appl Phys Lett, 2009, 94(22): 223504

    Article  Google Scholar 

  2. King R R, Law D C, Edmondson K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90(18): 183516

    Article  Google Scholar 

  3. Geisz J F, Friedman D J, Ward J S, et al. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl Phys Lett, 2008, 93(12): 123505

    Article  Google Scholar 

  4. Fitzgerald E A, Currie M T, Samavedam S B, et al. Dislocations in relaxed SiGe/Si heterostructures. Phys Stat Sol (a), 1999, 171(1): 227–238

    Article  Google Scholar 

  5. Sasaki T, Arafune K, Metzger W, et al. Characterization of carrier recombination in lattice-mismatched InGaAs solar cells on GaAs substrates. Sol Energy Mater Sol Cells, 2009, 93(6–7): 936–940

    Google Scholar 

  6. Dimroth F, Beckert R, Meusel M, et al. Metamorphic GaInP/GaInAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns. Prog Photovolt: Res Appl, 2001, 9(3): 165–178

    Article  Google Scholar 

  7. Dimroth F, Schubert U, Bett A W. 25.5% efficient Ga0.35In0.65P/Ga0.83In0.17As tandem solar cells grown on GaAs substrates. IEEE Electron Device Lett, 2000, 21(5): 209–211

    Article  Google Scholar 

  8. Fetzer C M, King R R, Colter P C, et al. High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE. J Cryst Growth, 2004, 261(2–3): 341–348

    Article  Google Scholar 

  9. Fetzer C M, Yoon H, King R R, et al. 1.6/1.1 eV metamorphic GaInP/GaInAs solar cells grown by MOVPE on Ge. J Cryst Growth, 2005, 276(1–2): 48–56

    Article  Google Scholar 

  10. Kurtz S R, Faine P, Olson J M. Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J Appl Phys, 1990, 68(4): 1890–1895

    Article  Google Scholar 

  11. King R R, Sherif R A, Law D C, et al. New horizons in III-V multijunction terrestrial concentrator cell research. Proc 4th Int Conf on PV Solar Energy, Dresden, Germany, 2005. 124–128

  12. Gergo L, Bett A W. EtaOpt—A program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells. 17th European PV Solar Energy Conf, Munich, Germany), 2001. Paper VA1.25

  13. Liu L, Chen N F, Bai Y M, et al. Quantum efficiency and temperature coefficients of GaInP/GaAs dual-junction solar cell. Sci China Ser E-Tech Sci, 2009, 52(5): 1176–1180

    Article  Google Scholar 

  14. Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering. New York: John Wiley, 2003. 359

    Book  Google Scholar 

  15. http://rredc.nrel.gov/solar/spectra/am1.5/

  16. Kurtz S R, Olson J M, Friedman D J, et al. Passivation of interfaces in high-efficiency photovoltaic devices Mater Res Soc Symp Pro, 1999, 573: 95–106

    Google Scholar 

  17. Casey H C, Shell D D, Wecht K W. Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. J Appl Phys, 1975, 46(1): 250–257

    Article  Google Scholar 

  18. Ghannam M Y, Poortmans J, Nijs J F, et al. Theoretical study of the impact of bulk and interface recombination on the performance of GaInP/GaAs/Ge triple junction tandem solar cells. Proc 3rd Int Conf on PV Solar Energy, Osaka, Japan, 2003. 666–669

  19. Yamaguchi M, Amano C. Efficiency calculation of thin-film GaAs solar cells on Si substrates. J Appl Phys, 1985, 58(9): 3601–3606

    Article  Google Scholar 

  20. Yamaguchi M, Amano C, Itoh Y. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates. J Appl Phys, 1989, 66(2): 915–919

    Article  Google Scholar 

  21. Kasap S, Capper P. Handbook of Electronic and Photonic Materials: Part D Materials for Optoelectronics and Photonics: Chap 31. Heidelberg: Springer, 2007. 735

    Google Scholar 

  22. Romanato F, Napolitani E, Carnera A, et al. Strain relaxation in graded composition InGaAs/GaAs buffer layer. J Appl Phys, 1999, 86(9): 4748–4755

    Article  Google Scholar 

  23. Gonzalez D, Araujo D, Molina S I, et al. Step-graded buffer layer study of the strain relaxation by transmission electron microscopy. Mater Sci Eng B, 1994, 28(1–3): 497–501

    Article  Google Scholar 

  24. Krishnamoorthy V, Lin Y W, Park R M. Application of “critical compositional difference” concept to the growth of low dislocation density (<104/cm2) InxGa1−x As (x<0.5) on GaAs. J Appl Phys, 1992, 72(5): 1752–1757

    Article  Google Scholar 

  25. Fitzgerald E A, Xie Y H, Green M L, et al. Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates. Appl Phys Lett, 1991, 59(7): 811–813

    Article  Google Scholar 

  26. Fitzgerald E A, Xie Y H, Monroe D, et al. Relaxed GexSi1−x structures for III-V integration with Si and high mobility two-dimensional electron gases in Si. J Vac Sci Technol B, 1992, 10(4): 1807–1819

    Article  Google Scholar 

  27. Bett A W, Baur C, Dimroth F, et al. Metamorphic GaInP-GaInAs layers for photovoltaic applications. Materials for Photovoltaics, MRS Symposium Proceedings (Materials Research Society, Pittsburgh), 2005, 836: 223

    Google Scholar 

  28. Liu Q J, Zhang R, Xie Z L, et al. Study of buffer and epitaxy technology in two-step growth of aluminium nitride. Sci China Ser E-Tech Sci, 2008, 51(11): 1881–1885

    Article  Google Scholar 

  29. Matthews J W, Mader S, Light T B. Accommodation of misfit across the interface between crystals of semiconducting elements or compounds. J Appl Phys, 1970, 41(9): 3800–3804

    Article  Google Scholar 

  30. Matthews J W, Blakeslee A E. Defects in epitaxial multilayers I. Misfit dislocations. J Cryst Growth, 1974, 27(12): 118–125

    Google Scholar 

  31. Yastrubchak O, Wosinski T, Domagala J Z, et al. Misfit strain anisotropy in partially relaxed lattice-mismatched InGaAs/GaAs heterostructures. J Phys: Condens Matter, 2004, 16: S1–S8

    Article  Google Scholar 

  32. Chang K H, Bhattacharya P K, Gibala R. Characteristics of dislocations at strained heteroepitaxial InGaAs/GaAs interfaces. J Appl Phys, 1989, 66(7): 2993–2998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhang or NuoFu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Chen, N., Wang, Y. et al. Evaluating the effect of dislocation on the photovoltaic performance of metamorphic tandem solar cells. Sci. China Technol. Sci. 53, 2569–2574 (2010). https://doi.org/10.1007/s11431-010-4015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4015-3

Keywords

Navigation