Skip to main content
Log in

Effects of temperature and pressure on the structural and optical properties of ZnO films grown by pulsed laser deposition

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

ZnO thin films were deposited on fused silica via pulsed laser deposition (PLD) at substrate temperatures from 300°C to 800°C and ambient oxygen pressures ranging from 10−2 mTorr to 240 mTorr. X-ray diffraction (XRD) and Raman spectra indicated that wurtzite ZnO was obtained in all cases. The highly c-oriented ZnO films were obtained for oxygen pressures above 11 mTorr. The room-temperature photoluminescence (PL) spectra demonstrated that all the films exhibited strong near-band-edge (NBE) emission, while deep-level (DL) emission was also observed in films deposited at oxygen pressures below 80 mTorr. From analysis of the XRD, Raman and photoluminescence PL data, an optimal condition was identified for the deposition of highly crystallized ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping. Appl Phys Lett, 2000, 76: 3257

    Article  Google Scholar 

  2. Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4: 42

    Article  Google Scholar 

  3. Ryu Y, Lee T S, Jorge A L, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl Phys Lett, 2006, 88: 241108

    Article  Google Scholar 

  4. Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 243

    Google Scholar 

  5. Carcia P F, McLean R S, Reily M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett, 2003, 82: 1117

    Article  Google Scholar 

  6. Jeong W J, Kim S K, Park G C. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films, 2006, 506/507: 180

    Article  Google Scholar 

  7. Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33: 406

    Article  Google Scholar 

  8. Agarwal D C, Chauhan R S, Amit K, et al. Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J Appl Phys, 2006, 99: 123105

    Article  Google Scholar 

  9. Li B S, Liu Y C, Chu Z S, et al. High quality ZnO thin films grown by plasma enhanced chemical vapor deposition. J Appl Phys, 2002, 91: 501

    Article  Google Scholar 

  10. Smith F T J. Metalorganic chemical vapor deposition of oriented ZnO films over large areas. Appl Phys Lett, 1983, 43: 1108

    Article  Google Scholar 

  11. Lu Y M, Hwang W S, Liu W Y, et al. Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering. Mater Chem Phys, 2001, 72: 269

    Article  Google Scholar 

  12. Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl Phys Lett, 1998, 73: 1038

    Article  Google Scholar 

  13. He Y N, Zhang J W, Yang X D, et al. Study on pulsed laser ablation and deposition of ZnO thin film by L-MBE. Sci China Ser E-Tech Sci, 2007, 50: 290

    Article  Google Scholar 

  14. Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett, 1998, 72: 3270

    Article  Google Scholar 

  15. Choopun S, Vispute R D, Noch W, et al. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Appl Phys Lett, 1999, 75: 3947

    Article  Google Scholar 

  16. Misra P, Kukreja L M. Buffer-assisted low temperature growth of high crystalline quality ZnO films using Pulsed Laser Deposition. Thin Solid Films, 2005, 485: 42

    Article  Google Scholar 

  17. Vispute R D, Talyansky V, Trajanovic Z, et al. High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III-V nitrides. Appl Phys Lett, 1997, 70: 2735

    Article  Google Scholar 

  18. Hayamizu S, Tabata H, Tanaka H, et al. Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J Appl Phys, 1996, 80: 787

    Article  Google Scholar 

  19. Shan F K, Liu G X, Lee W J, et al. Transparent conductive ZnO thin films on glass substrates deposited by pulsed laser deposition. J Cryst Growth, 2005, 277: 284

    Article  Google Scholar 

  20. Jin C M, Ashutosh T, Roger J N. Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films. J Appl Phys, 2005, 98: 083707

    Article  Google Scholar 

  21. Miyake A, Kominami H, Tatsuoka H, et al. Luminescent properties of ZnO thin films grown epitaxially on Si substrate. J Cryst Growth, 2000, 214/215: 294

    Article  Google Scholar 

  22. Ryu Y R, Zhu S, Budai J D. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. J Appl Phys, 2000, 88: 201

    Article  Google Scholar 

  23. Vispute R D, Talyansky V, Choopun S, et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett, 1998, 73: 348

    Article  Google Scholar 

  24. Ohtomo A, Tamura K, Saikusa K, et al. Single crystalline ZnO films grown on lattice-matched ScAIMgO4(0001) substrates. Appl Phys Lett, 1999, 75: 2635

    Article  Google Scholar 

  25. White G K. Thermal expansion of reference materials: Copper, silica and silicon. J Phys D: Appl Phys, 1973, 6: 2070

    Article  Google Scholar 

  26. Yim W M, Paff R J. Thermal expansion of AlN, sapphire, and silicon. J Appl Phys, 1974, 45: 1456

    Article  Google Scholar 

  27. Albertsson J, Abrahams S C, Kvick A. Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Cryst B, 1989, 45: 34

    Article  Google Scholar 

  28. Ryu Y R, Zhu S, Han S W, et al. Application of pulsed-laser deposition technique for cleaning a GaAs surface and for epitaxial ZnSe film growth. J Vac Sci Technol A, 1998, 16: 3058

    Article  Google Scholar 

  29. Jeong S H, Kim B S, Lee B T. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient. Appl Phys Lett, 2003, 82: 2625

    Article  Google Scholar 

  30. Yan J F, Lu Y M, Liu Y C, et al. Improvement of the crystalline quality of the ZnO epitaxial layer on a low-temperature grown ZnO buffer layer. J Cryst Growth, 2004, 266: 505

    Article  Google Scholar 

  31. Kim I S, Kim K H, Kimm S S, et al. Magnetron sputtering growth and characterization of single crystal ZnO thin films on Si using GaN interlayer. J Cryst Growth, 2007, 299: 295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangShan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Xu, C., Liu, Y. et al. Effects of temperature and pressure on the structural and optical properties of ZnO films grown by pulsed laser deposition. Sci. China Technol. Sci. 53, 317–321 (2010). https://doi.org/10.1007/s11431-010-0047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-0047-y

Keywords

Navigation